Квазирезонансные преобразователи с высоким кпд. Резонансный инвертор, преобразователь напряжения повышающий. Схема, конструкция, описание. Сделать самому, своими руками Резонансный бп

Квазирезонансные преобразователи с высоким кпд. Резонансный инвертор, преобразователь напряжения повышающий. Схема, конструкция, описание. Сделать самому, своими руками Резонансный бп
Квазирезонансные преобразователи с высоким кпд. Резонансный инвертор, преобразователь напряжения повышающий. Схема, конструкция, описание. Сделать самому, своими руками Резонансный бп

Описываемое устройство обеспечивает исключительно высокий КПД преобразования, допускает регулирование выходного напряжения и его стабилизацию, устойчиво работает при вариации мощности нагрузки. Интересен и незаслуженно мало распространен этот вид преобразователей — квазирезонансный, который в значительной мере избавлен от недостатков других популярных схем. Идея создания такого преобразователя не нова, но практическая реализация стала целесообразной сравнительно недавно, после появления мощных высоковольтных транзисторов, допускающих значительный импульсный ток коллектора при напряжении насыщения около 1,5 В. Главная отличительная особенность и основное преимущество этого вида источника питания — высокий КПД преобразователя напряжения, достигающий 97...98% без учета потерь на выпрямителе вторичной цепи, которые, в основном, определяет ток нагрузки.

От обычного импульсного преобразователя, у которого к моменту закрывания переключательных транзисторов ток, протекающий через них, максимален, квазирезонансный отличается тем, что к моменту закрывания транзисторов их коллекторный ток близок к нулю. Причем уменьшение тока к моменту закрывания обеспечивают реактивные элементы устройства. От резонансного он отличается тем, что частота преобразования не определяется резонансной частотой коллекторной нагрузки. Благодаря этому можно регулировать выходное напряжение изменением частоты преобразования и реализовывать стабилизацию этого напряжения. Поскольку к моменту закрывания транзистора реактивные элементы снижают до минимума ток коллектора, базовый ток также будет минимальным и, следовательно, время закрывания транзистора уменьшается до значения времени его открывания. Таким образом, полностью снимается проблема сквозного тока, возникающего при переключении. На рис. 4.22 показана принципиальная схема автогенераторного нестабилизированного блока питания.

Основные технические характеристики:

Общий КПД блока, %..................................................................92;

Напряжение на выходе, В, при сопротивлении нагрузки 8 Ом....... 18;

Рабочая частота преобразователя, кГц.........................................20;

Максимальная выходная мощность, Вт...........................................55;

Максимальная амплитуда пульсации выходного напряжения с рабочей частотой, В

Основная доля потерь мощности в блоке падает на нагревание" выпрямительных диодов вторичной цепи, а КПД самого преобразователя таков, что нет необходимости в теплоотводах для транзисторов. Мощность потерь на каждом из них не превышает 0,4 Вт. Специального отбора транзисторов по каким-либо параметрам также не требуется. При замыкании выхода или превышении максимальной выходной мощности генерация срывается, защищая транзисторы от перегревания и пробоя.

Фильтр, состоящий из конденсаторов С1...СЗ и дросселя LI, L2, предназначен для защиты питающей сети от высокочастотных помех со стороны преобразователя. Запуск автогенератора обеспечивает цепь R4, С6 и конденсатор С5. Генерация колебаний происходит в результате действия положительной ОС через трансформатор Т1, а частоту их определяют индуктивность первичной обмотки этого трансформатора и сопротивление резистора R3 (при увеличении сопротивления частота увеличивается).

Дроссели LI, L2 и трансформатор Т1 наматывают на одинаковых кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Обмотки дросселя выполняют одновременно, «в два провода», проводом ПЭЛШО-0,25; число витков — 20. Обмотка I трансформатора TI содержит 200 витков провода ПЭВ-2-0,1, намотанных внавал, равномерно по всему кольцу. Обмотки II и III намотаны «в два провода» — 4 витка провода ПЭЛШО-0,25; обмотка IV представляет собой виток такого же провода. Для трансформатора Т2 использован кольцевой магнитопровод К28х16х9 из феррита 3000НН. Обмотка I содержит 130 витков провода ПЭЛИ10-0,25, уложенных виток к витку. Обмотки II и III — по 25 витков провода ПЭЛШО-0,56; намотка — «в два провода», равномерно по кольцу.

Дроссель L3 содержит 20 витков провода ПЭЛИ10-0,25, намотанных на двух, сложенных вместе кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Диоды VD7, VD8 необходимо установить на теплоотводы площадью рассеяния не менее 2 см2 каждый.

Описанное устройство было разработано для использования совместно с аналоговыми стабилизаторами на различные значения напряжения, поэтому потребности в глубоком подавлении пульсаций на выходе блока не возникало. Пульсации можно уменьшить до необходимого уровня, воспользовавшись обычными в таких случаях LC-фильтрами, как, например, в другом варианте этого преобразователя с такими основными техническими характеристиками:

Номинальное выходное напряжение, В.............................................5,

Максимальный выходной ток, А...................................................... 2;

Максимальная амплитуда пульсации, мВ........................................50;

Изменение выходного напряжения, мВ, не более, при изменении тока нагрузки

от 0,5 до 2 А и напряжения сети от 190 до 250 В........................150;

Максимальная частота преобразования, кГц.................................. 20.

Схема стабилизированного блока питания на основе квазирезо-нансного преобразователя представлена на рис. 4.23.

Выходное напряжение стабилизируется соответствующим изменением рабочей частоты преобразователя. Как и в предыдущем блоке, мощные транзисторы VT1 и VT2 в теплоотводах не нуждаются. Симметричное управление этими транзисторами реализовано с помощью отдельного задающего генератора импульсов, собранного на микросхеме DDI. Триггер DD1.1 работает в собственно генераторе.

Импульсы имеют постоянную длительность, заданную цепью R7, С12. Период же изменяется цепью ОС, в которую входит оптрон U1, так что напряжение на выходе блока поддерживается постоянным. Минимальный период задает цепь R8, С13. Триггер DDI.2 делит частоту следования этих импульсов на два, и напряжение формы «меандр» подается с прямого выхода на транзисторный усилитель тока VT4, VT5. Далее усиленные по току управляющие импульсы дифференцирует цепь R2, С7, а затем, уже укороченные до длительности примерно 1 мкс, они поступают через трансформатор Т1 в базовую цепь транзисторов VT1, VT2 преобразователя. Эти короткие импульсы служат лишь для переключения транзисторов — закрывания одного из них и открывания другого.

Кроме того, основная мощность от генератора возбуждения потребляется только в моменты переключения мощных транзисторов, поэтому средний ток, потребляемый им, мал и не превышает 3 мА с учетом тока стабилитрона VD5. Это и позволяет питать его прямо от первичной сети через гасящий резистор R1. Транзистор VT3 является усилителем напряжения сигнала управления, как в компенсационном стабилизаторе. Коэффициент стабилизации выходного напряжения блока прямо пропорционален статическому коэффициенту передачи тока этого транзистора.

Применение транзисторного оптрона U1 обеспечивает надежную гальваническую развязку вторичной цепи от сети и высокую помехозащищенность по входу управления задающего генератора. После очередного переключения транзисторов VT1, VT2 начинает подзаряжаться конденсатор СЮ и напряжение на базе транзистора VT3 начинает увеличиваться, коллекторный ток тоже увеличивается. В результате открывается транзистор оптрона, поддерживая в разряженном состоянии конденсатор С13 задающего генератора. После закрывания выпрямительных диодов VD8, VD9 конденсатор СЮ начинает разряжаться на нагрузку и напряжение на нем падает. Транзистор VT3 закрывается, в результате чего начинается зарядка конденсатора С13 через резистор R8. Как только конденсатор зарядится до напряжения переключения триггера DD1.1, на его прямом выходе установится высокий уровень напряжения. В этот момент происходит очередное переключение транзисторов VT1, VT2, а также разрядка конденсатора СИ через открывшийся транзистор оптрона.

Начинается очередной процесс подзарядки конденсатора СЮ, а триггер DD1.1 через 3...4 мкс снова вернется в нулевое состояние благодаря малой постоянной времени цепи R7, С12, после чего весь цикл управления повторяется, независимо от того, какой из транзисторов — VT1 или VT2 — открыт в текущий полу период. При включении источника, в начальный момент, когда конденсатор СЮ полностью разряжен, тока через светодиод оптрона нет, частота генерации максимальна и определена в основном постоянной времени цепи R8, С13 (постоянная времени цепи R7, С12 в несколько раз меньше). При указанных на схеме номиналах этих элементов эта частота будет около 40 кГц, а после ее деления триггером DDI.2 — 20 кГц. После зарядки конденсатора СЮ до рабочего напряжения в работу вступает стабилизирующая петля ОС на элементах VD10, VT3, U1, после чего и частота преобразования уже будет зависеть от входного напряжения и тока нагрузки. Колебания напряжения на конденсаторе СЮ сглаживает фильтр L4, С9. Дроссели LI, L2 и L3 — такие же, как в предыдущем блоке.

Трансформатор Т1 выполнен на двух сложенных вместе кольцевых магнитопроводах К12x8x3 из феррита 2000НМ. Первичная обмотка намотана внавал равномерно по всему кольцу и содержит 320 витков провода ПЭВ-2-0,08. Обмотки II и III содержат по 40 витков провода ПЭЛ1110-0,15; их наматывают «в два провода». Обмотка IV состоит из 8 витков провода ПЭЛШО-0,25. Трансформатор Т2 выполнен на кольцевом магнитопроводе К28х16х9 из феррита 3000НН. Обмотка I — 120 витков провода ПЭЛШО-0,15, а II и III — по 6 витков провода ПЭЛ1110-0,56, намотанных «в два провода». Вместо провода ПЭЛШО можно использовать провод ПЭВ-2 соответствующего диаметра, но при этом между обмотками необходимо прокладывать два-три слоя лакоткани.

Дроссель L4 содержит 25 витков провода ПЭВ-2-0,56, намотанных на кольцевой магнитопровод К12х6х4,5 из феррита 100НН1. Подойдет также любой готовый дроссель индуктивностью 30...60 мкГн на ток насыщения не менее 3 А и рабочую частоту 20 кГц. Все постоянные резисторы — MJIT. Резистор R4 — подстроенный, любого типа. Конденсаторы С1...С4, С8 — К73-17, С5, С6, С9, СЮ - К50-24, остальные - КМ-6. Стабилитрон КС212К можно заменить на КС212Ж или КС512А. Диоды VD8, VD9 необходимо установить на радиаторы площадью рассеяния не менее 20 см2 каждый. КПД обоих блоков можно повысить, если вместо диодов КД213А использовать диоды Шоттки, например, любые из серии КД2997. В этом случае теплоотводы для диодов не потребуются.

Эта статья была подготовлена на основе материалов, присланных Александром Германовичем Семеновым , директором научно-производственного российско-молдавского предприятия "Элкон" , г.Кишинев. В подготовке статьи также участвовал главный инженер предприятия Александр Анатольевич Пенин . Александр Германович пишет:
"Специализируясь в области источников питания, нам удалось создать способ построения резонансных преобразователей с глубокой регулировкой выходных параметров, отличающийся от известных до сих пор. На данный способ получен международный патент. Наиболее полно преимущества способа проявляются при построении мощных - от 500 и до десятков киловатт - источников. Преобразователь не требует схем быстрой защиты от КЗ на выходе так как в нем практически не возникает режима разрыва тока ключей в любом режиме. Также устранена возможность возникновения сквозных токов. Поскольку физически (без обратных связей) преобразователь является источником тока, то появилась возможность перенести конденсатор фильтра питающего сетевого выпрямителя на выход преобразователя, что позволило получить коэффициент мощности на уровне 0.92-0.96 в зависимости от нагрузки. Частота резонансного контура не меняется, а это дает возможность эффективной фильтрации излучений преобразователя по всем направлениям. Практическая реализация осуществлена в виде источников тока для электрохимзащиты - станций катодной защиты марки "Элкон". Мощность 600, 1500, 3000 и 5000 ватт. КПД в номинальном режиме на уровне 0.93-095. СКЗ прошли сертификационные испытания в НПО "ВЗЛЕТ". Идет медленное, тягучее внедрение. Все это подтверждает жизненность идеи. Однако, как мне кажется, для достижения коммерческого успеха необходима популяризация идеи с целью привлечения к ней внимания".
Что ж, помочь коллегам всегда приятно, тем более, что идея, заложенная в основу продукции "Элкон", отличается новизной.

В настоящее время приборы и устройства силовой электроники, разрабатываемые для профессионального применения, активно оптимизируют по таким критериям, как масса, габариты, коэффициент полезного действия, надежность, стоимость. Эти требования неуклонно ужесточаются, то есть заказчик хочет иметь прибор с минимальными габаритами и массой, и при этом - с высоким КПД, высокой надежностью и низкой стоимостью .

С целью улучшения потребительских свойств изделий приходится прибегать к известным мерам: повышать рабочие частоты преобразования, уменьшать потери мощности на силовых элементах, снижать или исключать динамические перегрузки в силовой части схемы. Зачастую эти меры противоречат друг другу, и для достижения определенных результатов разработчик идет на некоторый, порой весьма непростой, компромисс . Поэтому дальнейшая оптимизация параметров преобразовательной техники возможна только с помощью перехода на новые принципы построения этих устройств.

Чтобы понять, принципиально чем отличается способ регулирования напряжения, предлагаемый "Элкон", какая новизна заключена в нем, вначале поговорим о традиционном построении регуляторов. Преобразователи постоянного напряжения в постоянное (DC/DC преобразователи), являющиеся значительным по объему классом устройств из области силовой электроники, традиционно строятся по следующей схеме: первичное звено осуществляет преобразование постоянного напряжения в переменной высокой частоты; вторичное звено осуществляет преобразование переменного напряжения в постоянное. В составе преобразователя обычно имеется регулятор, управляющий величиной выходного постоянного напряжения или поддерживающий его на требуемом уровне.

Высокочастотное преобразование может осуществляться при помощи различных схем, но если говорить о двухтактных схемах, то здесь можно назвать два типа: схемы с прямоугольной формой тока силовых ключей и резонансные с синусоидальной (или квазисинусоидальной) формой тока ключей.

Эффективность работы преобразователей в значительной степени определяется динамическими коммутационными потерями на силовых элементах при коммутации рабочих значений токов. Опыт разработки преобразователей мощностью более 100 Вт показывает, что снизить эти потери удается в основном за счет использования коммутационных элементов (транзисторов) с низким временем переключения и за счет формирования правильной траектории их переключения. Существующая на сегодняшний момент элементная база, конечно, обладает достаточно высокими динамическими характеристиками, но, тем не менее, они еще далеки от идеальных. Поэтому часто технологические ограничения приводят к значительным перенапряжениям на элементах силовой схемы, а значит, снижается общая надежность преобразователя .

Формирование правильной траектории переключения - немаловажная задача, которая также в значительной степени может снизить коммутационные перенапряжения. Этот метод обеспечивает так называемую "мягкую" коммутацию путем перераспределения энергии между собственно силовой частью коммутационного элемента (транзисторного ключа) и формирующим элементом. Уменьшение потерь происходит за счет возврата накопленной ими энергии . Напомним, что известными представителями формирующих элементов являются всевозможные RCD-цепи, гасящие резисторы, снабберы и т.д.

Практика разработки реальных преобразователей показывает, что при создании устройства с номинальной мощностью сотни-тысячи ватт приходится буквально "даться" за каждый ватт эффективной мощности, в максимальной степени снижать тепловые потери, снижающие общий КПД преобразователя.

Еще одна проблема относится к необходимости наличия быстродействующей защиты от короткого замыкания (КЗ) в нагрузке. Проблема состоит, главным образом, в том, что слишком быстродействующая защита становится слишком подверженной ложным срабатываниям, отключая преобразователь даже тогда, когда никакой опасности для него не возникает. Слишком медленная защита устойчива к ложным срабатываниям, но едва ли защитит прибор. Приходится тратить немало усилий на проектирование оптимальной защиты.

В связи с вышеизложенным, классический высокочастотный преобразователь оказывается не совсем отвечающим современным требованиям, предъявляемым к силовой преобразовательной технике. Возникает необходимость поиска новых способов построения этих приборов.

В последнее время инженеры обратили внимание на резонансные преобразователи, как на устройства с большими потенциальными возможностями. В резонансных преобразователях принципиально меньше динамические потери, они создают гораздо меньше помех, поскольку переключение происходит не прямыми фронтами, богатыми гармониками, а с гладкой формой сигнала, близкой к синусоидальной , . Резонансные преобразователи более надежны, им не требуется быстродействующая защита от короткого замыкания (КЗ) в нагрузке, потому как ограничение тока КЗ происходит естественным образом. Правда, из-за синусоидальной формы тока несколько возрастают статические потери в силовых элементах, но поскольку резонансные преобразователи не столь требовательны к динамике переключения силовых элементов, могут быть использованы IGBT транзисторы standard-класса, у которых напряжение насыщения меньше, чем у warp-speed IGBT-транзисторов. Можно вспомнить и о СИТ-транзисторах и даже о биполярных, хотя, на взгляд автора сайта, о последних лучше в данном контексте не вспоминать.

С точки зрения построения силовой схемы резонансные преобразователи получаются простыми и надежными. Однако до сих пор они не смогли вытеснить обычные полумостовые и мостовые преобразователи из-за принципиальных проблем с регулированием выходного напряжения . Обычные преобразователи использую принцип регулирования на основе широтно-импульсной модуляции (ШИМ), и здесь не возникает никаких сложностей. В резонансных же преобразователях использование ШИМ и других специальных методов (например, частотного регулирования за счет изменения частоты коммутации) приводит к увеличению динамических потерь, которые в некоторых случаях становятся соразмеримыми или даже превышающими потери в классических преобразователях. Использование же формирующих цепей оправдывает себя в ограниченном диапазоне частот и при очень небольшой глубине регулирования. Встречается несколько более эффективный способ, основанный на значительном уменьшении частоты коммутации, приводящей к уменьшению среднего тока нагрузки, а значит, и выходной мощности. Но этот способ частотного регулирования также можно назвать компромиссным, а значит, недостаточно удовлетворяющим современным требованиям .

И все же резонансные преобразователи оказались настолько заманчивыми, что было придумано еще несколько способов повысить их КПД и глубину регулирования. Увы, и эти идеи показали себя недостаточно эффективными. Использование дополнительного импульсного регулятора, устанавливаемого на выходе, приводит к необходимости использования еще одного звена преобразования, а значит, снижает КПД . Конструкция с переключением витков трансформатора опять-таки значительно усложняет преобразователь, повышает его стоимость и делает невозможным использование в областях широкого потребления.

Из сказанного можно сделать вывод, что основная проблема, мешающая широкому распространению резонансных преобразователей, кроется в создании эффективного способа глубокого регулирования выходного напряжения. Если эта проблема будет решена, удастся значительно улучшить характеристики устройств силовой электроники, их дальнейшему распространению в уже освоенные и новые области применения преобразовательной техники.

Специалистам предприятия "Элкон" удалось в значительной степени продвинуться в исследованиях способа регулирования путем уменьшения частоты коммутации. Именно данный способ был взят за основу, так как в нем сохраняется основное достоинство резонансной схемы - коммутационные переключения при нулевом токе. Изучение процессов, происходящих в обычном резонансном преобразователе, позволило уточнить его схему и найти более эффективный механизм регулирования в широком диапазоне нагрузок и приемлемом диапазоне частот, что составило основу международного патента . Помимо этого удалось достигнуть одинаковой амплитуды токов силовых транзисторов как в режиме номинальной нагрузки, так и в режиме КЗ, отсутствия сквозных токов через силовые транзисторы даже на максимальной частоте коммутации, "мягкой" нагрузочной характеристики (гораздо лучше, чем у обычного резонансного преобразователя).

Полная схема модернизированного резонансного преобразователя является предметом "ноу-хау" предприятия "Элкон", однако, чтобы читателю было понятно, в чем заключается усовершенствование, далее приводятся сведения из патента "Способ регулируемого резонансного преобразования постоянного напряжения".

Изобретение предназначается для реализации мощных, дешевых и эффективных регулируемых высокочастотных транзисторных резонансных преобразователей напряжения различного применения. Это могут быть сварочные преобразователи, установки индукционного нагрева, радиопередающие устройства и другое.

Имеется прототип регулируемого резонансного преобразователя напряжения, опубликованный в . В прототипе: создается колебание с собственным периодом То и периодом коммутации силовых ключей Тк; используется емкостной и индуктивный накопители энергии с потреблением от источника постоянного напряжения и передачи части энергии в нагрузку с выпрямителем; регулирование напряжения осуществляется за счет расстройки от резонанса с периодом собственных колебаний То частоты коммутации ключей Тк, близкой к То.

Как уже было сказано выше, расстройка приводит к значительному увеличению динамических потерь и в целом снижает надежность преобразователя, так как при расстройке утрачивается главное достоинство резонансного преобразователя - коммутация при нулевых токах. Все это приводит к тому, что способ целесообразно использовать только в маломощных преобразователях.

Имеется более близкий прототип, опубликованный в работе . В данном прототипе также создается колебание с собственным периодом То и периодом коммутации ключей Тк, но Тк>То; используется емкостной и индуктивный накопители энергии с потреблением от источника постоянного напряжения и передаче части энергии в нагрузку с выпрямителем; выходное напряжения регулируется за счет изменения периода коммутации Тк. Однако здесь избыток энергии емкостного накопителя возвращается обратно в источник питания за счет разряда емкостного накопителя через нагрузку, а ограничение фронта импульсов тока силовых ключей осуществляется с помощью дополнительных индуктивных накопителей. Этот способ сохраняет главное достоинство резонансного преобразователя - возможность коммутации силовых ключей при нулевых токах.

К сожалению, этот прототип также обладает рядом недостатков. Одним из принципиальных недостатков является увеличение тока ключей в случае возникновения перегрузок или КЗ в цепи нагрузки при номинальной или максимальной частоте. Так как в этом случае индуктивные элементы запасают большое количество энергии, она не успевает полностью вернуться в источник питания за небольшой период (Tк-То)/2. Еще один недостаток - принудительное обрывание тока через ключи несмотря на то, что фронт коммутации задан. Здесь возникает необходимость наличия сложной защиты ключевых элементов, сужает общий диапазон регулирования напряжения, что ведет к сужению области применения преобразователя.

Устройство, с помощью которого можно реализовать данный способ, представляет собой обычный резонансный полумостовой преобразователь с емкостным делителем напряжения (емкостным накопителем) и индуктивным накопителем, включенных с нагрузкой между стойкой транзисторов полумоста и средним выводом емкостного делителя. Дополнительные индуктивные накопители включаются в ветви или в контура каждого ключевого элемента.

Устройство, предложенное предприятием "Элкон", решает задачу обеспечения большого диапазона регулирования напряжения нагрузки и, таким образом, расширяет область его применения. В новом способе можно найти некоторые аналогии с прототипами и : создаются колебания с собственным периодом То и периодом коммутации Тк, причем Тк>То, также используются емкостной и индуктивный накопитель с потреблением от источника постоянного напряжения и передаче части энергии в нагрузку с выпрямителем, также осуществляется возврат избытка энергии емкостного накопителя обратно в источник, регулировка напряжения осуществляется за счет изменения Тк. Новизна способа состоит в том, что одновременно с первыми колебаниями создаются вторые колебания с собственным периодом То и периодом коммутации Тк, с использованием того же емкостного накопителя и второго индуктивного накопителя с потреблением энергии от емкостного накопителя и передачей энергии в нагрузку с выпрямителем.

Главной особенностью предложенного способа является одновременное протекание токов первого и второго колебаний через ключевые элементы таким образом, что суммарный ток через них не терпит разрыва, что и позволяет возвращать энергию индуктивных накопителей на максимальной частоте даже при возникновении КЗ. При этом амплитуда тока ключевых элементов остается на уровне номинальных значений. Этот способ "работает" во всем диапазоне периодов коммутации Тк, что успешно решает проблему резонансного преобразователя.

Устройство, показанное на рисунке 1 , содержит управляемый задающий генератор импульсов (1), выходы которого соединены с затворами транзисторов (2) и (3), образующими полумостовую стойку (плечо полумоста). Общая точка соединения транзисторов (2) и (3) через емкостной накопитель (резонансный конденсатор), обозначенный (5), подключена к одному из выводов трансформаторно-выпрямительной нагрузки (6). Индуктивные накопители (резонансные дроссели), обозначенные (7) и (8), соединены последовательно. Их общая точка соединения подключена к другому выводу нагрузки (6). Источник питающего напряжения (9) соединен с нижним выводов дросселя (7) и эмиттером транзистора (2). Верхний вывод дросселя (8) соединен с коллектором транзистора (3).

На рисунке 2 показаны графики, отражающие работу этого резонансного преобразователя. Задающий генератор (1) вырабатывает парафазные управляющие импульсы, показанные на рис.2 а-б , длительностью То/2 и регулируемым периодом коммутации Тк, которые по очереди открывают транзисторы (2) и (3). В установившемся режиме работы преобразователя, в момент времени t1 подается импульс управления на транзистор (2), при этом через него начинает протекать синусоидальный импульс тока I1, показанный на рис.2 в , - так называемые "первые колебания". Одновременно с ним через антипараллельный (оппозитный) диод (4) транзистора (3) продолжает протекать ток I2 - "вторые колебания".


рисунок 3
Первый такт работы схемы

На рисунке 3 показан первый такт работы схемы, отражающий ее поведение в промежутке (t1…t2). Резонансный конденсатор (5) с напряжением U5, график которого приведен на рис.2 г ., перезаряжается через трансформаторно-выпрямительную нагрузку (6), включающую трансформатор (6.1), выпрямитель (6.2) и собственно нагрузку (6.3). Первый резонансный дроссель (7) накапливает энергию. В то же время резонансный конденсатор (5) разряжается через второй резонансный дроссель (8) с напряжением U8, график которого приведен на рис.2 д . Дроссель (8) накапливает энергию в соответствии с полярностью, указанной на графике.


рисунок 4
Второй такт работы схемы

На рисунке 4 показан второй такт работы схемы, отражающий ее поведение в промежутке (t2…t3). Резонансный конденсатор (5) продолжает перезаряжаться через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7). Также резонансный конденсатор (5) перезаряжается через второй резонансный дроссель (8), который уже отдает энергию в соответствии с указанной полярностью.


рисунок 5
Третий такт работы схемы

На рисунке 5 показан третий такт работы схемы, отражающий ее поведение в промежутке (t3…t4). Резонансный конденсатор (5) продолжает заряжаться через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7) с напряжением U7, показанным на графике рис.2 е . В то же время резонансный конденсатор (5) уже заряжается от второго резонансного дросселя (8), который продолжает отдавать энергию в соответствии с указанной полярностью.


рисунок 6
Четвертый такт работы схемы

На рисунке 6 показан четвертый такт работы схемы, отражающий ее поведение в промежутке (t4…t5). Резонансный конденсатор (5) продолжает заряжаться через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7), который уже отдает энергию в соответствии с указанной на рисунке полярностью. В то же время резонансный конденсатор (5) продолжает заряжаться от второго резонансного дросселя (8).

На рисунке 8 показан шестой такт работы схемы, отражающий ее поведение в промежутке (t6…t7). Резонансный конденсатор (5) уже отдает энергию через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7) в источник питания (9). Ток I1 при этом меняет свое направление.


рисунок 9
Седьмой такт работы схемы

На рисунке 9 показан седьмой такт работы схемы, отражающий ее поведение в промежутке (t7…t8). Импульс управления подается на транзистор (3), при этом начинает протекать синусоидальный импульс тока I2 согласно рис.2 в , через этот транзистор ("второе колебание"). Также продолжает протекать ток I1 через антипараллельный диод (10) транзистора (2) - "первое колебание". Резонансный конденсатор (5) отдает энергию через трансформаторно-выпрямительную нагрузку (6) и первый резонансный дроссель (7) - в источник питающего напряжения (9) и во второй резонансный дроссель (8).

На рисунке 11 показан девятый такт работы схемы, отражающий ее поведение в промежутке (t9…t10). Все накопители отдают свою энергию.

На рисунке 13 показан заключительный такт работы схемы, отражающий ее поведение в промежутке (t11…t1). Идет разряд резонансного конденсатора (5), далее процессы повторяются.

Обратите внимание: на интервале времени t6- t7 идет возврат энергии в источник, поскольку ток I1 меняет свое направление. Отрицательная амплитуда тока I1 определяется нагрузкой преобразователя. Этот факт определяет дополнительные преимущества способа - амплитуда тока через ключи не увеличивается вплоть до короткого замыкания в нагрузке. Также полностью отсутствует проблема сквозных токов, что упрощает и делает надежным управление транзисторов. Отпадает и проблема создания быстрых защит для предотвращения режима КЗ.

Эта идея была положена в основе опытных образцов, а также серийных изделий, которые в настоящее время производит "Элкон". К примеру, преобразователь напряжения мощностью 1, 8 кВт, спроектированный для станции катодной защиты подземных трубопроводов, получает питание от однофазной сети переменного тока 220 В 50 Гц. В нем применены силовые транзисторы IGBT типа IRG4PC30UD класса ultra-fast со встроенным оппозитным диодом, емкость резонансного конденсатора (5) составляет 0,15 мкФ, индуктивность резонансных дросселей (7) и (8) - по 25 мкГн. Период собственных колебаний То составляет 12 мкс, коэффициент трансформации трансформатора (6.1) - 0,5, что определяет диапазон номинальной нагрузки (0,8…2,0) Ом. Для минимального значения периода коммутации Тк, равного 13 мкс (при частоте коммутации fk равной 77 кГц) и нагрузке 1 Ом амплитуды токов I1 и I2 соответственно составляют плюс 29 А и минус 7 А. Для нагрузки 0,5 Ом амплитуды токов I1 и I2 составили соответственно плюс 29 А и минус 14 А. В случае КЗ эти значения составляют плюс 29 А и минус 21 А, средний ток через нагрузку составляет 50 А, то есть проявляется эффект ограничения тока КЗ.

На рисунке 14 показано семейство регулировочных характеристик преобразователя. Важно отметить, что во всем диапазоне частоты коммутации переключающие импульсы подаются при нуле токов. Эти результаты были получены в системе схемотехнического моделирования OrCAD 9.1, затем проверены на натурном макете.

Для сравнения, на рисунке 15 представлено семейство регулировочных характеристик аналогичного по мощности классического резонансного преобразователя. Минимальный период коммутации Тк увеличен из-за возникновения сквозных токов и составляет 14 мкс (при частоте коммутации fк равной 72 кГц). Для этой номинальной частоты выполняется режим коммутации в нуле тока. Для сопротивления нагрузки 1 Ом амплитуда тока нагрузки равна 30А, для сопротивления 0.5 Ом амплитуда равна уже 58А. В случае КЗ амплитуда тока через транзисторы становится более 100 А, причем коммутация силовых транзисторов происходит уже не в нуле токов, а средний ток нагрузки становится более 180 А. Таким образом, как было указано ранее, возникает необходимость в быстрой защите от КЗ для исключения аварии.

Участок регулирования "А" (тонкие линии) характеризует режим коммутации не в нуле тока. Практический интерес представляет участок регулирования "Б", когда частота коммутации меньше номинальной в два и более раз. Можно отметить, что глубина регулирования указанным способом для классического преобразователя значительно меньше, чем в преобразователе "Элкон", а необходимость работы на более низкой частоте коммутации ухудшает удельные энергетические показатели классического преобразователя. Предлагаемый преобразователь "Элкон" обладает практически приемлемыми регулировочными характеристиками и диапазоном изменения частоты коммутации.

Учитывая мягкую нагрузочную характеристику, возможно регулирование выходного напряжения на фиксированной частоте за счет фазового регулирования двух преобразователей, соединенных параллельно по переменному напряжению. Этот вариант проверен на макете мощностью 1.2 кВт. Выходное напряжение изменяется от нуля до максимального.

Полученные результаты позволяют предположить, что преобразователи напряжения, использующие новый способ резонансного преобразования, найдут более широкое применение во всех областях использования обычных преобразователей с ШИМ регулированием на десятки и более кВт.

А теперь - немного о серийной продукции. Предприятие "Элкон" производит:
- станции катодной защиты мощностью 0.6, 1.5, 3.0 и 5.0 кВт., с КПД в номинальном режиме не хуже 93%;
- источники для ручной дуговой сварки мощностью 5.0 и 8.0 кВт с питанием от сети 220 вольт 50 Гц;
- источники для ручной дуговой сварки мощностью 12 кВт с питанием от трехфазной сети 380 вольт 50 Гц;
- источники для нагрева кузнечных заготовок мощностью 7.0 кВт с питанием от сети 220 вольт 50 Гц;
- преобразователи для высоковольтной солнечной батареи мощностью 5.0 кВт с входным напряжением от 200 до 650 В и выходным напряжением 400 В; при модуляции выходного напряжения преобразователя по синусоидальному закону частотой 100 Гц и последующем распределении полуволн осуществлена передача электроэнергии от солнечной батареи в сеть 220 вольт 50 Гц.
Сотрудники предприятия надеются, что данная идея вдохновит также и опытных радиолюбителей, которые заняты конструированием сварочной техники.

ЛИТЕРАТУРА
Мещеряков В.М. Силовая электроника- эффективный способ решения проблем региональной программы "Энергоресурсосбережения"//Электротехника. 1996. 12.с.1.
Высокочастотные транзисторные преобразователи./Э.М.Ромаш, Ю.И.Драбович, Н.Н.Юрченко, П.Н.Шевченко -М.:Радио и связь,1988.-288с.
Гончаров А.Ю. Серийно выпускаемые транзисторные преобразователи электроэнергии // Электроника: Наука, Технология, Бизнес. 1998. 2.с.50.
Ковалев Ф.И., Флоренцев С.Н. Силовая электроника: вчера, сегодня, завтра //Электротехника. 1997. 11.с.2.
Дмитриков В.Ф. и др. Новые высокоэффективные отечественные источники электропитания с бестрансформаторным входом // http//:www.add.ru/r/konkurs/st.18.html
Патанов Д.А. Общие проблемы снижения коммутационных потерь в инверторах напряжения // http://www.add.ru/r/konkurs/avtst8.html
Жданкин В.К. Устройства силовой электроники фирмы Zicon Electronics // Cовременные технологии автоматизации. 2001.N1.с.6.
Белов Г.А. Высокочастотные тиристорно-транзисторные преобразователи постоянного напряжения. -М.: Энергоатомиздат,1987.-120с.
Патент PCT, WO94/14230, 23.06.94, H02M 3/335.
Патент PCT/MD 03/00001. 16.05.2002, H02M3/337 Что пишут

Технология MICOR. Новое поколение источников питания на основе явления резонанса

Метод, использующий широтно-импульсную модуляцию (ШИМ), является ответом на поиски практически совершенного стабилизированного источника питания. Известно, что в импульсном источнике ключ либо включен, либо выключен и управление осуществляется с нулевым рассеянием мощности, в отличие от линейного стабилизатора, где стабилизация происходит из-за рассеяния мощности в проходном элементе. В реальных условиях ШИМ дает разумный подход к переключению без потерь за счет более низкой частоты переключения, например в диапазоне 20–40 кГц. Если посмотреть на ситуацию с другой стороны, можно сказать, почему этот частотный диапазон так долго был популярен.

От самого начала стабилизации с помощью ШИМ конструкторы пытались продвигаться в сторону более высоких частот, поскольку при этом можно уменьшить размеры, вес и стоимость магнитного сердечника и конденсаторов фильтра.

При высокой частоте переключения появляются и другие преимущества. Используя более высокие частоты, можно ожидать уменьшения радиопомех и электромагнитных шумов; меньших проблем при экранировке, развязке, изоляции и ограничении в схеме. Можно также ожидать более быстрого срабатывания, а также снижения выходного сопротивления и величины пульсаций.

Главным препятствием на пути применения более высоких частот были практические трудности создания быстрых и достаточно мощных переключателей. Из-за того что невозможно дости чь мгновенного включения и выключения коммутатора, на нем во время переключения имеется напряжение и одновременно через него протекает ток. Другими словами, трапецеидальные, а не прямоугольные колебания характеризуют процесс переключения. Это, в свою очередь, приводит к потерям переключения, которые сводят на нет теоретически высокий КПД идеального коммутатора, который мгновенно включается, имеет нулевое сопротивление во включенном состоянии и мгновенно выключается. На рис. 1 сравниваются ШИМ и режим переключения в резонансном режиме, который будет рассмотрен подробнее.

Из сказанного выше очевидно, что на идеальном переключателе не должно быть никакого падения напряжения, в то время когда он включен. Все эти рассуждения говорят о том, что высокий КПД был труднодостижимой задачей, особенно при высоких частотах переключения до тех пор, пока не был достигнут прогресс в создании импульсных полупроводниковых приборов.

Следует указать также, что одновременно был необходим прогресс в создании других устройств, таких, как диоды, трансформаторы и конденсаторы.

Надо отдать должное работникам всех областей техники: частота переключения при использовании ШИМ была повышена до 500 кГц. Тем не менее на высоких частотах, скажем на частоте 150 кГц, лучше рассмотреть другой метод. Итак, мы приходим к резонансному режиму работы источника питания.

Стабилизированный источник питания, использующий резонансный режим, действительно представляет собой большой скачок вперед в развитии технологии. Хотя надо сказать, что использование резонансных явлений в инверторах, преобразователях и источниках питания предшествует эре полупроводников. Оказалось, что при использовании резонансных явлений часто удавалось получать хорошие результаты.

Например, в первых телевизорах необходимые высокие напряжения для кинескопа получали с помощью радиочастотного источника питания.

Это был работающий на частоте от 150 до 300 кГц генератор синусоидальных колебаний на электронной лампе, в котором повышение переменного напряжения достигалось в резонансном радиочастотном трансформаторе. По существу, подобные схемы все еще используются для создания напряжений, по крайней мере нескольких сотен тысяч вольт для различных промышленных и научно-исследовательских целей. Более высокие напряжения часто достигаются благодаря совместному применению резонансного режима работы и диодного умножителя напряжения.

Давно известно, что резонансные выходные цепи инвертора стабилизируют работу электродвигателей и сварочного оборудования. Обычно в разрыв провода, ведущего от источника постоянного напряжения к инвертору, включалась катушка с большой индуктивностью. При этом инвертор ведет себя по отношению к нагрузке как источник тока, что дает возможность легче соответствовать условию существования резонансных явлений. В этом случае существующие тиристорные инверторы правильнее назвать квазирезонансными: колебательный контур периодически подвергается ударному возбуждению, но непрерывные колебания отсутствуют. Между импульсами возбуждения колебательный контур отдает запасенную энергию в нагрузку.

Из сказанного выше ясно, что широкое использование резонансного режима работы началось после создания специализированных ИС управления. Эти ИС освободили конструкторов от проблем со сбоями, которые неизбежно сопутствуют стремлению использовать резонансный режим на частотах несколько сот килогерц или несколько мегагерц, где малые размеры компонент могут дать заметное сокращение габаритов, веса и стоимости.

В 2010 году нашими специалистами на резонансной системе работы был создан ряд сварочных машин для ручной дуговой сварки: Handy-190, Handy-200, X-350 Шторм (рис. 2).

В настоящее время на основе такой технологии конструируются машины для полуавтоматической и автоматической сварки (рис. 3).

Такое оборудование имеет ряд технологических преимуществ:

  • почти «идеальная» внешняя вольтамперная характеристика источника питания, более эластичная и мягкая дуга благодаря резонансной структуре управления;
  • уверенное зажигание и комфортная сварка для всех типов электродов;
  • значительно более высокий КПД (более низкое потребление электроэнергии);
  • возможность более точного управления переносом капли за счет мгновенной (1,5 МГц) реакции схемы управления на внешние возмущения (дуги), а как следствие – значительное уменьшение разбрызгивания, стабильное горение сварочной дуги во всех пространственных положениях.

Рис. 1. Осциллограммы, показывающие разницу между ШИМ (слева) и резонансным режимом (справа). При ШИМ потери переключения появляются из-за одновременного протекания тока через коммутатор и наличия напряжения на нем.

Обратите внимание, что эта ситуация отсутствует при резонансном режиме работы, который для стабилизации напряжения использует частотную модуляцию (ЧМ)

Рис. 2. Handy-190 Micor

Рис. 3. Основная схема резонансного преобразователя

Обычно я придерживаюсь принципа, что чем меньше в схеме деталей, чем она проще, тем она надежнее. Но данный случай - исключение. Те, кто проектировал и собирал схемы мощных повышающих преобразователей напряжения с 12 / 24 вольт на 300 (например), знают, что классические подходы тут работают плохо. Слишком велики токи в низковольтных цепях. Использование схем с ШИМ приводит к возникновению коммутационных потерь, которые моментально перегревают и выводят из строя силовые транзисторы. Внутреннее сопротивление силовых ключей является серьезной помехой применению схем с конструктивным ограничением коммутационных потерь, таких как мостовые и полумостовые схемы.

Приведенная схема основана на разделении функции повышения напряжения и его стабилизации в разных каскадах. При таком подходе мы получаем возможность самый проблемный блок - инвертор - заставить работать в резонансном режиме при минимальных потерях на силовых ключах и выпрямительном мосте в высоковольтной части схемы. А стабилизация выходного напряжения осуществляется в блоке СТ , который собран по простой повышающей топологии. Сейчас его схема не приводится, о нем будет отдельная статья. С его выхода снимается стабильное нужное напряжение.

Принципиальная схема резонансного преобразователя напряжения

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Здравствуйте! Не подскажете, при входном питании 29-30 вольт надо пересчитыват ь трансформатор или подойдет вариант 24в? И еще вопрос - сердечники нашлись у меня без зазора, материал не известен - это принципиально? ...

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. ...
Схема преобразователя однофазного напряжения в трехфазное....

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида...
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при...

Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная...
Расчет и применение колебательных контуров. Явление резонанса. Последовательные...


Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р...


Схема импульсного блока питания. Расчет на разные напряжения и токи....

Преобразователь однофазного напряжения в трехфазное. Принцип действия,...
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех...

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму...
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи....

Расчет силового резонансного фильтра. Рассчитать онлайн, он-лайн, on-l...
Как получить синусоидальное напряжение на выходе при входном напряжении сложной...


Сетевой источник питания - один из самых ответственных узлов в структуре электронной аппаратуры. Наиболее важные параметры сетевого преобразователя: рабочий диапазон входного напряжения, потребляемая мощность в дежурном режиме, габаритные размеры, надежность, электромагнитная совместимость и себестоимость. Подавляющее большинство современной аппаратуры с питанием от сети использует импульсные источники питания.

Введение

Проблемы энергосбережения и энергоэффективности — среди наиболее актуальных в мировой энергетике. Одним из важнейших путей повышения КПД устройства является увеличение эффективности импульсных преобразователей источника питания. Повышение КПД и плотности мощности — доминирующие факторы при разработке AC/DC-преобразователей.

Особенностью компьютерных источников питания, а также других источников питания бытовой электронной аппаратуры является изменение потребления в широких пределах в зависимости от режима работы и активности разных модулей системы. В персональном компьютере реализован режим управления энергопотреблением за счет понижения тактовой частоты, отключения питания дисплея, винчестера или перевода ПК в дежурный или спящий режим. Диапазон потребления — от нескольких ватт (дежурный режим) до нескольких сот ватт. В ЖК-телевизорах с динамической светодиодной подсветкой или плазменных панелях ток потребления определяется яркостью текущего изображения на экране. Обеспечение высокой эффективности преобразования для всех режимов — непростая задача.

Энергоэффективная электроника

В последние десять лет рядом правительственных организаций и инициативных объединений разработаны критерии для оценки эффективности источников питания электронной аппаратуры. Основная цель требований — контроль и существенное понижение уровня потребления современной бытовой электронной аппаратуры. Производители аппаратуры должны сертифицировать свою продукцию в соответствии с этими требованиями.

Программа Energy Star

Energy Star — это совместная программа Агентства защиты окружающей среды США (Environmental Protection Agency, EPA) и департамента энергии. Цель программы — обеспечение эффективного использования вырабатываемой электрической энергии и уменьшение вредного воздействия на окружающую среду. Одним из направлений программы Energy Star является разработка базовых требований для сертификации потребления бытового электронного оборудования, в частности, компьютеров, мониторов, факсимильных аппаратов, копировальной техники, телевизоров, аудиокомплексов, систем кондиционирования помещений, холодильников и прочей бытовой техники. Разработка новых пороговых требований по потреблению бытовых электронных устройств вынудила производителей использовать новые энергосберегающие решения, что привело к появлению нового класса электронных устройств с пониженным потреблением электроэнергии. Например, уже в 2002 году, благодаря активному внедрению стандартов Energy Star, было сэкономлено только в США более 100 млрд кВт ч электроэнергии.

Документы Energy Star, регламентирующие уровни требований к энергоэффективности электронного оборудования:

  • Energy Star v5.0 Desktop Computers and Workstations (with 80 PLUS certified power supplies);
  • Energy Star v1.0 Datacenter Servers (with 80 PLUS certified power supplies);
  • Energy Star v5.0 LCD Monitors.

80 PLUS — новые стандарты экономичности блоков питания

Ранее КПД большинства блоков питания системных блоков составлял около 80%. Благодаря деятельности инициативной группы комитета 80 PLUS была принята новая единая система стандартов экономичности для производителей блоков питания. Эти компании были вынуждены улучшить показатели эффективности, чтобы получить сертификацию для допуска на рынки ведущих стран.

В документах определены желательные уровни эффективности преобразования для трех различных режимов нагрузки преобразователя (20, 50 и 100%) (таблица). В соответствии с этими уровнями определены четыре класса экономичности приборов: бронзовый, серебряный, золотой и платиновый:

  • 80 PLUS E-Star 4.0 — КПД 80% при всех уровнях нагрузки БП.
  • 80 PLUS Bronze — КПД 82% при слабой (20%) и сильной (100%) нагрузке на БП и КПД 85% при средней (50%) нагрузке на БП.
  • 80 PLUS Silver — КПД 85% при слабой и сильной нагрузке на БП и КПД 88% при средней нагрузке на БП.
  • 80 PLUS Gold — КПД 87% при слабой и сильной нагрузке на БП и КПД 90% при средней нагрузке на БП.

Таблица. Сертификационные уровни эффективности по 80 PLUS

80 PLUS Тип тестирования 115 В без внутреннего резервирования 230 В с внутренним резервированием
Уровень нагрузки 20% 50% 100% 20% 50% 100%
80 PLUS 80% 80% 80% Не определены
80 PLUS Bronze 82% 85% 82% 81% 85% 81%
80 PLUS Silver 85% 88% 85% 85% 89% 85%
80 PLUS Gold 87% 90% 87% 88% 92% 88%
80 PLUS Platinum 90% 92% 89% 90% 94% 91%

В 2006 году организация Energy Star включила требования 80 PLUS в свои нормативные документы Energy Star 4.0 компьютерных спецификаций. Уже в ноябре 2006-го и феврале 2007 года компании HP и Dell сертифицировали свои компьютерные блоки питания на соответствие требованиям 80 PLUS.

Архитектура импульсного источника питания

Типовой сетевой компьютерный ATX импульсный источник питания (switch mode power supply, SMPS) должен обеспечивать выходное напряжение 12 В и ток 20 А.

Основная область применения — источник питания компьютерной аппаратуры (системного блока РС), других компьютерных устройств, телекоммуникационного оборудования, ЖК-телевизоров, плазменных панелей, светодиодных светильников и зарядных устройств. Основная цель — эффективное преобразование, уменьшение размеров, уровня ЭМИ, а также потерь мощности и тепловыделения.

Исходные данные

Универсальный диапазон входного напряжения — от 90 до 265 В AC при частоте от 47-63 Гц. Это означает, что источник сможет работать в любой стране с любым номиналом сетевого напряжения, а также при отклонениях от номинала по напряжению и частоте. Выходное напряжение и ток — 12 В/20 А. Потребление от сети — 50 мA в выключенном режиме; 100 мA в режиме сна; 5 A в активном режиме.

Предложенная архитектура, показанная на рис. 1, имеет трехступенчатую структуру:

  1. Корректор коэффициента мощности.
  2. Контроллер импульсного преобразователя напряжения.
  3. Синхронный выпрямитель источника вторичной цепи.

Рис. 1. Структурная схема импульсного источника питания на 240 Вт

Выбранная архитектура основана на использовании трех эффективных ступеней преобразования энергии. Первая ступень — универсальный входной активный корректор коэффициента мощности с выходным напряжением 385 В на контроллере NCP1397B. Вторая ступень — полумостовой резонансный LLC-конвертор. Во вторичной цепи +12 В этого источника применяется схема синхронного выпрямления, построенная на микросхеме контроллера NCP4303 ON Semiconductor.

Архитектура, выбранная для данного проекта, позволяет оптимизировать системные ресурсы, с тем чтобы обеспечить максимальную эффективность преобразования энергии и выполнить исходные требования к источнику питания. Архитектура позволяет также снизить цену, уменьшить сложность устройства и увеличить его надежность.

Первая ступень. Корректор коэффициента мощности

Применение технологии корректировки коэффициента мощности (ККМ) является одним из ключевых аспектов при разработке эффективных и мощных сетевых источников питания. Подавляющее число бытовых и промышленных потребителей электроэнергии используют в настоящее время импульсные сетевые преобразователи, AC/DC-конверторы. Типовая структура сетевого преобразователя содержит диодный мост, емкостной фильтр, а также преобразователи выходных стабилизированных напряжений. При необходимости AC/DC-конверторы также могут содержать и гальваническую развязку от сети.

Эффективность преобразования определяется эффективностью базовых узлов — выпрямителя с фильтром и DC/DC-конверторов. Слабым по части эффективности энергопередачи является звено «диодный мост - конденсатор». Заряд емкости и, следовательно, потребление энергии от сети производится только в короткие фазы во время «верхушек» синусоид сетевого напряжения. А передача энергии из накопительной емкости в нагрузку может происходить неравномерно по времени.

Для обеспечения требуемой токовой нагрузки емкость конденсатора должна быть довольно большой. По мере возрастания мощности преобразователя проблема становится критической. При зарядке большой накопительной емкости в короткий период времени происходят броски тока в сети. А в начальный момент подключения источника к сети броски тока могут достигать сотен ампер. Это приводит к искажению формы сетевого напряжения. Включение в сеть нелинейных нагрузок, например, светильников с газоразрядными лампами, управляемых электродвигателей, источников электропитания с емкостным фильтром и т. д., приводит к тому, что потребляемый этими устройствами ток имеет импульсный характер с высоким процентом содержания высоких гармоник, из-за которых могут возникать проблемы электромагнитной совместимости при работе различного оборудования.

Корректор коэффициента мощности и стандарты

Основная задача ККМ — сведение к нулю отставания потребляемого тока от напряжения в сети при сохранении синусоидальной формы тока. Для этого необходимо отбирать ток от сети не в короткие интервалы, а на протяжении всего периода работы. Мощность, отбираемая от источника, должна оставаться постоянной даже в случае изменения напряжения сети. Это значит, что при снижении напряжения сети ток нагрузки должен быть увеличен, и наоборот. Со стороны сети блок питания будет выглядеть как чисто активное сопротивление. Корректор коэффициента мощности представляет собой преобразователь напряжения с индуктивным накопителем и передачей энергии на обратном ходу. Ступень ККМ в структуре мощного AC/DC-конвертора — это промежуточный источник стабилизированного напряжения, от которого питаются другие конверторы напряжений.

Во всех современных мощных источниках питания широко применяется активная коррекция коэффициента мощности. Использование ступени коррекции коэффициента мощности позволяет повысить КПД преобразования и уменьшить уровень сетевых помех. Необходимость корректора коэффициента мощности (ККМ) в мощных сетевых источниках вторичного электропитания регламентируется требованиями по электромагнитной совместимости ГОСТ Р 51317-2000. Нормы по гармоническим составляющим потребляемого тока и коэффициенту мощности для систем электропитания мощностью более 50 Вт и всех типов осветительного оборудования определяет стандарт МЭК IEC 1000-3-2. Для устройств питания аппаратуры связи с марта 2001 г. Минсвязи РФ введен ОСТ 45.188-20-01, в котором указано, что коэффициент мощности оборудования электропитания должен быть не менее 0,95 для устройств с коррекцией мощности.

Структура модуля корректора мощности

Модуль корректора коэффициента мощности (рис. 2) содержит микросхему контроллера ККМ, дроссель, мощный ключ MOSFET, выпрямительный диод, цепи датчика обратной связи и выходную емкость.

Рис. 2. Структура корректора коэффициента мощности

Регулирование и стабилизация выходного напряжения осуществляются ШИМ-сигналом. На схеме не показаны цепи питания, управления режимами и порогами срабатывания защиты. Схема практически ничем не отличается от классических схем импульсных преобразователей напряжения. Стоит отметить лишь несколько особенностей. Для удовлетворения требований стандартов по электромагнитной совместимости преобразование в корректорах всегда осуществляется на постоянной частоте. Обычно при мощности свыше 200 Вт большинство ККМ организованы как бустерные преобразователи, работающие в режиме непрерывной проводимости (РНП) или тока CCM (Continuous Current Mode).

NCP1605 — контроллер корректора коэффициента мощности

NCP1605 — микросхема контроллера корректора коэффициента мощности. Она работает на фиксированной частоте преобразования и в режиме управления Critical Conduction Mode. Для выходной мощности 240 Вт выбран наиболее эффективный режим Frequency Clamped Critical Conduction Mode (FCCrM), поскольку он обеспечивает не только высокую эффективность преобразования, но и низкий уровень ЭМИ. Контроллер NCP1605 работает именно в этом режиме. Схема также имеет встроенную защиту, как от токовой перегрузки, так и для режима с отключенной нагрузкой.

Вторая ступень. Полумостовой резонансный LLC-конвертор

Ступень импульсного источника питания SMPS использует топологию полумостовой LLC резонансной схемы, что значительно повышает эффективность преобразования и позволяет уменьшить уровень ЭМИ, а также улучшить использование развязывающего трансформатора, по сравнению с традиционной топологией (рис. 3). В LLC используется две индуктивности (LL), включенные последовательно — дроссель + первичная обмотка трансформатора, и одна емкость (С).

Рис. 3. Структура полумостового резонансного LLC-конвертора

Полумостовой резонансный преобразователь имеет LLC-топологию и принадлежит к подвиду последовательных резонансных преобразователей (Series Resonant Converters, SRC). Он широко используется в приложениях, где требуется высокая плотность мощности.

Схема полумостового резонансного LLC-конвертора является отличной альтернативой традиционной топологии полумостовой схемы (Half Bridge, HB) по нескольким причинам:

  • Переключение происходит при переходе напряжения через ноль (Zero Voltage Switching, ZVS) в широком диапазоне нагрузок. Поскольку переключение происходит при низком напряжении на стоке ключа, минимизированы потери на переключении. Это также позволяет значительно снизить уровень ЭМИ по сравнению с топологией HB (полумостовая схема), в которой переключение происходит в более жестких условиях.
  • Низкий ток во время переключения. Ключ закрывается при низком проходном токе, что обеспечивает низкие потери энергии по сравнению с потерями в топологии HB.
  • Низкий ток выключения на диодах вторичной цепи: когда конвертор работает в режиме больших выходных токов, выходной выпрямитель переходит в закрытое состояние при условии протекания малого тока, что позволяет уменьшить уровень ЭМИ.
  • Топология схемы не приводит к увеличению числа компонентов. Общее число компонентов остается такое же, как и в классической схеме с полумостовой топологией.

На рис. 4 показана структурная схема полумостового резонансного конвертора. Полумостовые ключи работают со скважностью 50% и обеспечивают формирование высоковольтных прямоугольных импульсов с амплитудой от 0 до входного напряжения V IN , которое поступает на резонансную схему. Посредством подстройки частоты через генератор, управляемый напряжением, (ГУН) обеспечивается следящая обратная связь. Частота изменяется в зависимости от величины нагрузки.

Рис. 4. Структурная схема полумостового резонансного конвертора напряжения

NCP1397 — контроллер LLC-конвертора

Сердцем полумостового резонансного LLC-конвертора является микросхема контроллера NCP1397. Благодаря патентованной высоковольтной технологии, этот контроллер содержит драйвер MOSFET-транзисторов полумостовой выходной схемы. Напряжение питания полумостовой схемы — до 600 В.

Контроллер имеет многоуровневую встроенную защиту, в том числе блокировку выхода при пропадании входного напряжения, потере сигнала обратной связи с оптопары и т. д. Это позволяет улучшить показатель надежности работы ступени без усложнения дизайна и дополнительных компонентов.

Вторичная цепь источника питания. Синхронный выпрямитель

Зачем нужно синхронное выпрямление? Использование схемы синхронного выпрямления позволяет сократить потери на выпрямлении при больших значениях тока и нагрузки. При использовании обычной диодной схемы, даже на диодах Шоттки, при больших токах значительно возрастает падение напряжения и, соответственно, возрастают потери.

На рис. 5 показаны преимущества использования синхронного выпрямления при высоком выходном токе по сравнению с обычной диодной схемой выпрямителя.

Рис. 5. Сравнение потерь на синхронном выпрямителе и обычном диодном выпрямителе (потери на диодах Шоттки будут больше при больших токах, чем на открытом канале MOSFET-транзистора)

Однако можно заметить, что режим синхронного выпрямления становится неэффективен в зоне малых токов в нагрузке. Для сохранения эффективности в широком диапазоне изменения нагрузки модуль синхронного выпрямления автоматически выключается при малых токах. На рис. 6 показана схема управления синхронными выпрямителями NCP4303 со схемой отключения при малых токах нагрузки.