8.3 законы сохранения механической энергии и импульса. Законы сохранения энергии и импульса. Упругие и неупругие столкновения. Законы сохранения энергии в макроскопических процессах

8.3 законы сохранения механической энергии и импульса. Законы сохранения энергии и импульса. Упругие и неупругие столкновения. Законы
 сохранения
 энергии
 в макроскопических процессах
8.3 законы сохранения механической энергии и импульса. Законы сохранения энергии и импульса. Упругие и неупругие столкновения. Законы сохранения энергии в макроскопических процессах

Решение многих практических задач значительно упрощается, если воспользоваться законами сохранения — законом сохранения импульса и законом сохранения и превращения энергии, ведь эти законы можно использовать и тогда, когда силы, действующие в системе, неизвестны. Итак, вспомним виды механической энергии и решим несколько задач на применение законов сохранения.

Вспоминаем о механической энергии

Энергия (от греч. «деятельность») — это физическая величина, которая является общей мерой движения и взаимодействия всех видов материи.

Энергию обозначают символом E (или W). Единица энергии в СИ — джоуль:

В механике мы имеем дело с механической энергией.

механическая энергия — это физическая величина, которая является мерой движения и взаимодействия тел и характеризует способность тел выполнять механическую работу.

Виды механической энергии

Сумма кинетической и потенциальной энергий тела (системы тел) — это полная механическая энергия тела (системы тел): E = E k + E p

Изучая механическую энергию в курсе физики 7 класса, вы узнали о том, что, когда система тел замкнута, а тела системы взаимодействуют друг с другом только силами упругости и силами тяготения, полная механическая энергия системы не изменяется.

В этом состоит закон сохранения и превращения механической энергии, который математически можно записать так:

где E k0 + E p0 — полная механическая энергия системы тел в начале наблюдения; E k + E p — полная механическая энергия системы тел в конце наблюдения.

Вспоминаем алгоритм решения задач на закон сохранения механической энергии

Алгоритм решения задач с применением закона сохранения механической энергии

1. Прочитайте условие задачи. Определите, является ли система замкнутой, можно ли пренебречь действием сил сопротивления. Запишите краткое условие задачи.

2. Выполните пояснительный рисунок, на котором укажите нулевой уровень, начальное и конечное состояния тела (системы тел).

3. Запишите закон сохранения и превращения механической энергии. Конкретизируйте эту запись, используя данные задачи и соответствующие формулы для расчета энергии.

4. Решите полученное уравнение относительно неизвестной величины. Проверьте ее единицу и найдите числовое значение.

5. Проанализируйте результат, запишите ответ.

Закон сохранения механической энергии значительно упрощает решение многих практических задач. Рассмотрим алгоритм решения таких задач на конкретном примере.

Задача 1. Участник аттракциона по бан-джи-джампингу прыгает с моста (см. рисунок).

Какова жесткость резинового каната, к которому привязан спортсмен, если во время падения шнур растянулся от 40 до 100 м? Масса спортсмена 72 кг, начальная скорость его движения равна нулю. Сопротивление воздуха не учитывайте.


Анализ физической проблемы. Сопротивление воздуха не учитываем, поэтому систему тел «Земля — человек — шнур» можно считать замкнутой и для решения задачи воспользоваться законом сохранения механической энергии: в начале прыжка спортсмен имеет потенциальную энергию поднятого тела, в самой низкой точке эта энергия преобразуется в потенциальную энергию деформированного шнура.

Поиск математической модели, решение Выполним рисунок, на котором укажем начальное и конечное положения спортсмена. За нулевой уроень выберем самое низкое положение спортсмена (шнур растянут максимально, скорость движения спортсмена равна нулю). Запишем закон сохранения механической энергии.

Применяем закон сохранения механической энергии и закон сохранения импульса одновременно

Играли ли вы в бильярд? Один из видов столкновения бильярдных шаров — упругий центральный удар — столкновение, при котором потери механической энергии отсутствуют, а скорости движения шаров до и после удара направлены вдоль прямой, проходящей через центры шаров.

Задача 2. Шар, двигавшийся по бильярдному столу со скоростью 5 м/с, сталкивается с неподвижным шаром такой же массы (см. рисунок). Определите скорости шаров после столкновения. Удар считайте упругим центральным.

Анализ физической проблемы. Систему двух шаров можно считать замкнутой, удар упругий центральный, значит, потери механической энергии отсутствуют. Следовательно, для решения задачи можно использовать и закон сохранения механической энергии, и закон сохранения импульса. За нулевой уровень выберем поверхность стола. Поскольку потенциальные энергии шаров до и после удара равны нулю, полная механическая энергия системы равна сумме кинетических энергий шаров.

Запишем для системы двух шаров закон сохранения импульса и закон сохранения механической энергии, учитывая, что v 02 = 0:

Поиск математической модели, решение.Выполним рисунок, на котором укажем положение шаров до и после удара.

Анализ результатов. Видим, что шары «обменялись» скоростями: шар 1 остановился, а шар 2 приобрел скорость шара 1 до столкновения. Заметим: при упругом центральном ударе двух тел одинаковой массы эти тела «обмениваются» скоростяминезависимо от того, какими были начальные скорости движения тел.


Применяем закон сохранения механической энергии и закон сохранения импульса поочередно

Если вам интересно, с какой скоростью вылетает стрела из лука или какова скорость движения пули пневматической винтовки, может помочь баллистический маятник— тяжелое тело, подвешенное на металлических стержнях. Узнаем, как с помощью этого устройства определить скорость движения пули.

Задача 3. Пуля массой 0,5 г попадает в подвешенный на стержнях деревянный брусок массой 300 г и застревает в нем. Определите, с какой скоростью двигалась пуля, если после попадания пули брусок поднялся на высоту 1,25 см (см. рисунок).

Анализ физической проблемы. При попадании пули в брусок последний приобретает скорость. Время проникновения пули в брусок мало, поэтому в это время систему «пуля — брусок» можно считать замкнутой и воспользоваться законом сохранения импульса. А вот законом сохранения механической энергии воспользоваться нельзя, так как присутствует сила трения.

Когда пуля остановила свое движение внутри бруска и он начал отклоняться, то действием силы сопротивления воздуха можно пренебречь и воспользоваться законом сохранения механической энергии для системы «Земля — брусок». А вот импульс бруска будет уменьшаться, поскольку часть импульса передается Земле.

Поиск математической модели, решение Запишем закон сохранения импульса для положений 1 и 2 (см. рисунок), приняв во внимание, что в положении 1 брусок находится в покое, а в положении 2 брусок и пуля движутся вместе:

Запишем закон сохранения механической энергии для положений 2 и 3 и конкретизируем его:

Подставив выражение для скорости (2) в формулу (1), получим формулу для определения скорости движения тела с помощью баллистического маятника:

Проверим единицу, найдем значение искомой величины:

Вместо итогов

Мы рассмотрели лишь несколько примеров решения задач. На первый взгляд кажется, что и импульс, и механическая энергия сохраняются не всегда. Что касается импульса — это не так. Закон сохранения импульса — это всеобщий закон Вселенной. А якобы «появление» импульса

(см. задачу 1 в § 38) и его «исчезновение» (см. задачу 3 в § 38, положения тел 2 и 3) объясняются тем, что Земля тоже получает импульс. Именно поэтому, решая задачи, мы «ищем» замкнутую систему.

Механическая энергия действительно сохраняется не всегда: система может получить дополнительную механическую энергию, если внешние силы выполнят положительную работу (например, вы бросили мяч); система может потерять часть механической энергии, если внешние силы выполнят отрицательную работу (например, велосипед остановился из-за действия силы трения). Однако полная энергия (сумма энергий тел системы и частиц, из которых эти тела состоят) всегда остается неизменной. Закон сохранения энергии — это всеобщий закон Вселенной.

Упражнение № 38

Выполняя задания 2-4, сопротивлением воздуха следует пренебречь.

1. Груз массой 40 кг сбросили с самолета. После того как на высоте 400 м скорость движения груза достигла 20 м/с, он начал двигаться равномерно. Определите: 1) полную механическую энергию груза на высоте 400 м; 2) полную механическую энергию груза в момент приземления; 3) энергию, в которую преобразовалась часть механической энергии груза.

2. Шарик бросили горизонтально с высоты 4 м со скоростью 8 м/с. Определите скорость движения шарика в момент падения. Решите задачу двумя способами: 1) рассмотрев движение шарика как движение тела, брошенного горизонтально; 2) воспользовавшись законом сохранения механической энергии. Какой способ в данном случае удобнее?

3. Пластилиновый шарик 1 массой 20 г и втрое больший по массе шарик 2 подвешены на нитях. Шарик 1 отклонили от положения равновесия на высоту 20 см и отпустили.

Шарик 1 столкнулся с шариком 2 и прилип к нему (рис. 1). Определите: 1) скорость движения шарика 1 до столкновения; 2) скорость движения шариков после столкновения; 3) максимальную высоту, на которую поднимутся шарики после столкновения.

4. Шарик массой 10 г вылетает из пружинного пистолета, попадает в центр пластилинового бруска, подвешенного на нитях, и прилипает к нему. На какую высоту поднимется брусок, если перед выстрелом пружина была сжата на 4 см, жесткость пружины — 256 Н/м, а масса бруска — 30 г?

Экспериментальное задание

«Баллистический маятник». Изготовьте баллистический маятник (рис. 2).

Возьмите бумажную коробку и вылепите из пластилина еще одну коробку, немного меньшую по размеру. Вставьте пластилиновую коробку в бумажную и подвесьте устройство на нитях.

Испытайте устройство, измерив, например, скорость движения шарика детского пружинного пистолета. Для расчетов воспользуйтесь формулой, полученной при решении задачи 3 в § 38.

ЛАБОРАТОРНАЯ РАБОТА № 7

Тема. Изучение закона сохранения механической энергии.

Цель: убедиться на опыте, что полная механическая энергия замкнутой системы тел остается неизменной, если в системе действуют только силы тяжести и силы упругости.

Оборудование: штатив с муфтой и лапкой,

динамометр, набор грузов, линейка длиной 4050 см, резиновый шнур длиной 15 см с указателем и петельками на концах, карандаш, прочная нить.

теоретические сведения

Для выполнения работы можно использовать экспериментальную установку, изображенную на рис. 1. Отметив на линейке положение указателя при ненагруженном шнуре (отметка 0), к петельке шнура подвешивают груз. Груз оттягивают вниз (положение 1), придав шнуру некоторое удлинение (рис. 2). В положении 1 полная механическая энергия системы «шнур — груз — Земля» равна потенциальной энергии растянутого шнура:

где F 1 = kx 1 — модуль силы упругости шнура при его растяжении на x 1 .

Затем груз отпускают и отмечают положение указателя в момент, когда груз достигнет максимальной высоты (положение 2). В этом положении полная механическая энергия системы равна сумме потенциальной энергии поднятого на высоту h груза и потенциальной энергии растянутого шнура:

указания к работе

подготовка к эксперименту

1. Прежде чем приступить к выполнению работы, вспомните:

1) требования безопасности при выполнении лабораторных работ;

2) закон сохранения полной механической энергии.

2. Проанализируйте формулы (1) и (2). Какие измерения следует выполнить, чтобы определить полную механическую энергию системы в положении 1; в положении 2? Составьте план проведения эксперимента.

3. Соберите установку, как показано на рис. 1.

4. Потянув за нижнюю петельку шнура вертикально вниз, выпрямите шнур, не натягивая его. Обозначьте на линейке карандашом положение указателя при ненагруженном шнуре и поставьте отметку 0.

Эксперимент

Строго придерживайтесь инструкции по безопасности (см. форзац).

Результаты измерений сразу заносите в таблицу.

1. Определите с помощью динамометра вес P груза.

2. Подвесьте груз к петельке. Оттянув груз вниз, отметьте на линейке положение 1 указателя, возле отметки поставьте цифру 1.

3. Отпустите груз. Заметив положение указателя в момент, когда груз достиг наибольшей высоты (положение 2), поставьте в соответствующем месте отметку 2. Обратите внимание: если отметка 2 будет выше отметки 0, опыт необходимо повторить, уменьшив растяжение шнура и соответственно изменив расположение отметки 1.

4. Измерьте силы упругости F 1 и F 2 , возникающие в шнуре при его растяжении на x 1 и x 2 соответственно. Для этого снимите груз и, зацепив петельку шнура крючком динамометра, растяните шнур сначала до отметки 1, а затем до отметки 2.

5. Измерив расстояния между соответствующими отметками, определите удлинения x 1 и x 2 шнура, а также максимальную высоту h подъема груза (см. рис. 2).

6. Повторите действия, описанные в пунктах 1-5, подвесив на шнур два груза вместе.

Обработка результатов эксперимента

1. Для каждого опыта определите:

1) полную механическую энергию системы в положении 1;

2) полную механическую энергию системы в положении 2.

2. Закончите заполнение таблицы.

Анализ результатов эксперимента

Проанализируйте эксперимент и его результаты. Сформулируйте вывод, в котором: 1) сравните полученные вами значения полной механической энергии системы в положении 1; в положении 2; 2) укажите причины возможного расхождения результатов; 3) укажите физические величины, измерение которых, на ваш взгляд, дало наибольшую погрешность.

Задание «со звездочкой»

По формуле

эксперимента.

Творческое задание

Возьмите небольшой шарик на длинной прочной нити. К нити привяжите резиновый шнур и закрепите его так, чтобы шарик висел на расстоянии 20-30 см от пола. Потяните шарик вниз и измерьте удлинение шнура. Отпустив шарик, измерьте высоту, на которую он поднялся. Определите жесткость шнура и вычислите данную высоту теоретически. Сравните результат вычисления с результатом эксперимента. В чем возможные причины расхождений?

Это материал учебника

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса .

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Необходимое определение:

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии .

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

,

где – приведенная масса шаров . Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Нить с подвешенным на ней грузом отклонили на угол α и отпустили. На какой угол β отклонится нить с грузом, если при своем движении она будет задержана штифтом, поставленным на вертикали, посередине длины нити?

Ответ

β = arccos(2cosα -1).

1. Тело брошено вертикально вверх со скоростью v 0 = 16 м/с. На какой высоте h кинетическая энергия тела равна его потенциальной энергии?

2. С какой начальной скоростью надо бросить мяч с высоты h , чтобы он подпрыгнул на высоту 2h ? Удар упругий. Сопротивлением воздуха пренебречь.

Ответ

1. h ≈ 6,5 м.

С башни высотой H = 25 м горизонтально брошен камень со скоростью v 0 = 15 м/с. Найти кинетическую (K ) и потенциальную (U ) энергии камня спустя одну секунду после начала движения. Масса камня m = 0,2 кг. Сопротивлением воздуха пренебречь.

Ответ

K = 32,2 Дж; U = 39,4 Дж.

Определить величину кинетической энергии K тела массой 1 кг, брошенного горизонтально со скоростью 20 м/с, в конце четвертой секунды его движения. Принять g =10 м/с 2 .

Ответ

K = 1000 Дж.

Гибкий однородный канат длиной L лежит на гладком горизонтальном столе. Один конец каната находится у края стола. В некоторый момент от небольшого толчка канат начал двигаться, непрерывно соскальзывая со стола. Как зависит ускорение и скорость каната от длины х куска его, свешивающегося со стола? Какова будет скорость каната к моменту, когда он сползет со стола?

Ответ

a = xg /L ; ; .

Канат длиной L переброшен через штырь. В начальный момент концы каната находились на одном уровне. После слабого толчка канат пришел в движение. Определить скорость v каната к моменту, когда он соскользнет со штыря. Трением пренебречь.

Ответ

Конькобежец, разогнавшись до скорости v = 27 км/ч, въезжает на ледяную гору. На какую высоту H от начального уровня въедет конькобежец с разгона, если подъем горы составляет h = 0,5 м на каждые s = 10 м по горизонтали и коэффициент трения коньков о лед k = 0,02?

Ответ

H ≈ 2 м.

Тело массой m = 1,5 кг, брошенное вертикально вверх с высоты h = 4,9 м со скоростью v 0 = 6 м/с, упало на землю со скоростью v = 5 м/с. Определить работу сил сопротивления воздуха.

Ответ

A ≈ -80,2 Дж.

Камень массой 50 г, брошенный под углом к горизонту с высоты 20 м над поверхностью земли со скоростью 18 м/с, упал на землю со скоростью 24 м/с. Найти работу по преодолению сил сопротивления воздуха.

Ответ

A ≈ 3,5 Дж.

Самолет массой m = 10 3 кг летит горизонтально на высоте H = 1200 м со скоростью v 1 = 50 м/с. Затем мотор отключается, самолет переходит в планирующий полет и достигает земли со скоростью v 2 = 25 м/с. Определить среднюю силу сопротивления воздуха при спуске, принимая длину спуска равной 8 км.

Ответ

F ср ≈ 1570 Н.

Тело массой m = 1 кг движется по столу, имея в начальной точке скорость v 0 = 2 м/с. Достигнув края стола, высота которого h = 1 м, тело падает. Коэффициент трения тела о стол k = 0,1. Определить количество теплоты, выделившееся при неупругом ударе о землю. Путь, пройденный телом по столу, s = 2 м.

Ответ

Q ≈ 9,8 Дж.

Прикрепленный к вертикальной пружине груз медленно опускают до положения равновесия, причем пружина растягивается на длину х 0 . На сколько растянется пружина, если тому же грузу предоставить возможность падать свободно с такого положения, при котором пружина не растянута? Какой максимальной скорости v макс достигнет при этом груз? Каков характер движения груза? Масса груза m . Массой пружины пренебречь.

Ответ

2x 0 ; ; колебательный характер движения груза.

Падающим с высоты h = 1,2 м грузом забивают сваю, которая от удара уходит в землю на s = 2 см. Определить среднюю силу удара F ср и его продолжительность τ , если масса груза М = 5·10 2 кг, масса сваи много меньше массы груза.

Ответ

F ср ≈ 3·10 5 Н; τ ≈ 8·10 -3 с.

С горы высотой h = 2 м и основанием b = 5 м съезжают санки, которые затем останавливаются, пройдя по горизонтали путь l = 35 м от основания горы. Найти коэффициент трения.

Ответ

k = 0,05.

Стальной шарик массой m = 20 г, падая с высоты h 1 = 1 м на стальную плиту, отскакивает от нее на высоту h 2 = 81 см. Найти: а) импульс силы, действовавшей на плиту за время удара; б) количество теплоты, выделившееся при ударе.

Ответ

а) p = 0,17 Н·с;

б) Q = 3,7·10 -2 Дж.

Легкий шарик начинает свободно падать и, пролетев расстояние l , сталкивается упруго с тяжелой плитой, движущейся вверх со скоростью u . На какую высоту h подскочит шарик после удара?

Ответ

Воздушный шар, удерживаемый веревкой, поднялся на некоторую высоту. Как изменилась потенциальная энергия системы шар — воздух — Земля?

Ответ

Потенциальная энергия системы шар — воздух — Земля уменьшилась, поскольку при подъеме шара вверх объем, занимаемый шаром, замещается воздухом, имеющим массу, бо льшую, чем шар.

Хоккейная шайба, имея начальную скорость v 0 = 5 м/с, скользит до удара о борт площадки s = 10 м. Удар считать абсолютно упругим, коэффициент трения шайбы о лед k = 0,1, сопротивлением воздуха пренебречь. Определить, какой путь l пройдет шайба после удара.

Ответ

l ≈ 2,7 м.

Тело соскальзывает без трения с клина, лежащего на горизонтальной плоскости, два раза: первый раз клип закреплен; второй раз клин может скользить без трения. Будет ли скорость тела в конце соскальзывания с клина одинакова в обоих случаях, если тело оба раза соскальзывает с одной и той же высоты?

Ответ

Скорость тела в первом случае больше, чем во втором.

Почему трудно допрыгнуть до берега с легкой лодки, стоящей вблизи берега, и легко это сделать с парохода, находящегося на таком же расстоянии от берега?

Ответ

Прыгая с парохода, человек совершает меньшую работу, чем в том случае, когда прыгает с лодки.

Конькобежец массой М = 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой m = 3 кг со скоростью v = 8 м/с относительно Земли. Найти, на какое расстояние s откатится при этом конькобежец, если коэффициент трения коньков о лед k = 0,02.

Ответ

s ≈ 0,29 м.

Человек стоит на неподвижной тележке и бросает горизонтально камень массой m = 8 кг со скоростью v 1 = 5 м/с относительно Земли. Определить, какую при этом человек совершает работу, если масса тележки вместе с человеком М = 160 кг. Проанализируйте зависимость работы от массы М . Трением пренебречь.

Ответ

A ≈ 105 Дж.

Винтовка массой М = 3 кг подвешена горизонтально на двух параллельных нитях. При выстреле в результате отдачи она отклонилась вверх на h = 19,6 см.

Масса пули m = 10 г. Определить скорость v 1 , с которой вылетела пуля.

Ответ

v 1 ≈ 590 м/с.

Пуля, летевшая горизонтально со скоростью v = 40 м/с, попадает в брусок, подвешенный на нити длиной l = 4 м, и застревает в нем. Определить угол α , на который отклонится брусок, если масса пули m 1 = 20 г, а бруска m 2 = 5 кг.

Ответ

α ≈ 15º.

Пуля, летящая горизонтально, попадает в шар, подвешенный на очень легком жестком стержне, и застревает в нем. Масса пули в n = 1000 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара l = 1 м. Найти скорость пули v , если известно, что стержень с шаром отклонился от удара пули на угол α = 10°.

Ответ

v ≈ 550 м/с.

Пуля массой m 1 = 10 г, летевшая горизонтально со скоростью v 1 = 600 м/с, ударилась в свободно подвешенный на длинной нити деревянный брусок массой m 2 = 0,5 кг и застряла в нем, углубившись на s = 10 см. Найти силу F с сопротивления дерева движению пули. На какую глубину S 1 войдет пуля, если тот же брусок закрепить.

Ответ

F с ≈ 1,8·10 4 Н; s 1 ≈ 10,2 см.

В покоящийся шар массой М = 1 кг, подвешенный на длинном жестком стержне, закрепленном в подвесе на шарнире, попадает пуля массой m = 0,01 кг. Угол между направлением полета пули и линией стержня равен α = 45°. Удар центральный. После удара пуля застревает в шаре и шар вместе с пулей, отклонившись, поднимается на высоту h = 0,12 м относительно первоначального положения. Найти скорость пули v . Массой стержня пренебречь.

Ответ

v ≈ 219 м/с.

Маятник представляет собой прямой тонкий стержень длиной l = 1,5 м, на конце которого находится стальной шар массой М = 1 кг. В шар попадает летящий горизонтально со скоростью v = 50 м/с стальной шарик массой m = 20 г. Определить угол максимального отклонения маятника, считая удар упругим и центральным. Массой стержня пренебречь.

Ответ

α ≈ 30º.

На нити, перекинутой через блок, подвешены два груза неравных масс m 1 и m 2 . Найти ускорение центра масс этой системы. Решить задачу двумя способами, применяя: 1) закон сохранения энергии и 2) закон движения центра масс. Массами блока и нити пренебречь.

Ответ

.

Молот массой m = 1,5 т ударяет по раскаленной болванке, лежащей на наковальне, и деформирует ее. Масса наковальни вместе с болванкой М = 20 т. Определить коэффициент полезного действия η при ударе молота, считая удар неупругим. Считать работу, совершенную при деформации болванки, полезной.

Ответ

η ≈ 93 %.

Тело массой m 1 ударяется неупруго о покоящееся тело массой m 2 . Найти долю q потерянной при этом кинетической энергии.

Ответ

q = m 2 /(m 1 +m 2).

На передний край платформы массой М , движущейся горизонтально без трения со скоростью v , опускают с небольшой высоты короткий брусок массой m . При какой минимальной длине платформы l брусок не упадет с нее, если коэффициент трения между бруском и платформой k . Какое количество теплоты Q выделится при этом.

Ответ

; .

Телу массой m = 1 кг, лежащему на длинной горизонтальной платформе покоящейся тележки, сообщают скорость v = 10 м/с. Коэффициент трения тела о платформу k = 0,2. Какой путь пройдет тележка к тому моменту, когда тело остановится на ней? Какое количество теплоты выделится при движении тела вдоль платформы? Тележка катится по рельсам без трения, ее масса М = 100 кг.

Ответ

s ≈ 0,25 м; Q ≈ 50 Дж.

Два груза массами m 1 = 10 кг и m 2 = 15 кг подвешены на нитях длиной l = 2 м так, что соприкасаются между собой. Меньший груз был отклонен на угол α = 60° и отпущен. На какую высоту поднимутся оба груза после удара? Удар грузов считать неупругим. Какое количество теплоты при этом выделяется?

Ответ

h ≈ 0,16 м; Q ≈ 58,8 Дж.

Шарик движется между двумя очень тяжелыми вертикальными параллельными стенками, соударяясь с ними по закону абсолютно упругого удара. Одна из стенок закреплена, другая движется от нее с постоянной горизонтальной скоростью u х = 0,5 м/с. Определить число соударений и и окончательную скорость v x шарика, если перед первым соударением со стенкой она была равна v 0x = 19,5 м/с.

Ответ

Число соударений n = 19; v x = 0,5 м/с.

Два шара подвешены на параллельных нитях одинаковой длины так, что они соприкасаются. Массы шаров m 1 = 0,2 кг и m 2 = 100 г. Первый шар отклоняют так, что его центр тяжести поднимается на высоту h = 4,5 см, и отпускают. На какую высоту поднимутся шары после соударения, если удар: а) упругий; б) неупругий?

Ответ

а) h 1 = 5·10 -3 м, h 2 = 0,08 м;

б) H = 0,02 м.

Во сколько раз уменьшится скорость атома гелия после центрального упругого столкновения с неподвижным атомом водорода, масса которого в четыре раза меньше массы атома гелия?

Ответ

n = 5/3.

На шар, лежащий на гладкой горизонтальной поверхности, налетает другой шар такого же радиуса, движущийся горизонтально. Между шарами происходит упругий центральный удар. Построить график зависимости доли переданной энергии от отношения масс шаров α =m 1 /m 2 .

Ответ

.

Для получения медленных нейтронов их пропускают сквозь вещества, содержащие водород (например, парафин). Найти, какую наибольшую часть своей кинетической энергии нейтрон массой m 0 может передать: а) протону (масса m 0); б) ядру атома свинца (масса m = 207 m 0). Наибольшая часть передаваемой энергии соответствует упругому центральному удару.

Ответ

а) 100 %, при упругом столкновении частиц с одинаковой массой происходит обмен скоростями;

Два идеально упругих шарика массами m 1 и m 2 движутся вдоль одной и той же прямой со скоростями v 1 и v 2 . Во время столкновения шарики начинают деформироваться и часть кинетической энергии переходит в потенциальную энергию деформации. Затем деформация уменьшается, а запасенная потенциальная энергия вновь переходит в кинетическую. Найти значение максимальной потенциальной энергии деформации.

Ответ

.

Небольшое тело обтекаемой формы с плотностью ρ 1 падает в воздухе с высоты h на поверхность жидкости с плотностью ρ 2 , причем ρ 1 < ρ 2 . Определить глубину h 1 погружения тела в жидкость, время погружения t и ускорение a . Сопротивлением жидкости пренебречь.

Ответ

; ; .

На нити длиной l подвешен груз массой m . Определить, на какую минимальную высоту надо поднять этот груз, чтобы он, падая, разорвал нить, если минимальный груз массой М , подвешенный на нити и разрывающий ее, растягивает нить в момент разрыва на 1% от ее длины. Принять, что для нити справедлив закон Гука вплоть до разрыва.

Ответ

h мин = 0,01Ml /(2m ).

Определить максимальную дальность полета струи s из шприца диаметром d = 4 см, на поршень которого давит сила F = 30 Н. Плотность жидкости ρ = 1000 кг/м 3 . Сопротивлением воздуха пренебречь (S отв ≪ S порш).

Ответ

s ≈ 4,9 м.

Цилиндр диаметром D заполнен водой и расположен горизонтально. С какой скоростью u перемешается в цилиндре поршень, если на него действует сила F , а из отверстия в дне цилиндра вытекает струя диаметром d ? Трением пренебречь. Силу тяжести не учитывать. Плотность жидкости ρ .

Ответ

.

По гладкому горизонтальному проволочному кольцу могут без трения скользить две бусинки массами m 1 и m 2 . Вначале бусинки были соединены ниткой и между ними находилась сжатая пружина. Нитку пережигают. После того как бусинки начали двигаться, пружинку убирают. В каком месте кольца бусинки столкнуться в 11-й раз? Столкновения бусинок абсолютно упругие. Массой пружины пренебречь.

Ответ

l 1 /l 2 = m 2 /m 1 , где l 1 и l 2 — длины дуг кольца от точки начала движения до точки 11-го соударения.

Протон массой m , летящий со скоростью v 0 , столкнулся с неподвижным атомом массой М , после чего стал двигаться в прямо противоположную сторону со скоростью 0,5 v o , а атом перешел в возбужденное состояние. Найти скорость v и энергию Е возбуждения атома.

Ответ

; .

При распаде неподвижного ядра образуются три осколка массами m 1 , m 2 и m 3 с общей кинетической энергией Е 0 . Найти скорости осколков, если направления скоростей составляют друг с другом углы в 120°.

Ответ

;

;

;

В общем виде:

В неподвижный шар ударяется не по линии центров другой такой же шар. Под каким углом α разлетятся шары, если они абсолютно упругие и абсолютно гладкие?

Ответ

α = 90º.

Два шара А и В с различными неизвестными массами упруго сталкиваются между собой. Шар А до соударения находился в покое, а шар В двигался со скоростью v . После соударения шар В приобрел скорость 0,5 v и начал двигаться под прямым углом к направлению своего первоначального движения. Определить направление движения шара А и его скорость v A после столкновения.

Ответ

v A = 0,66v .

При бомбардировке гелия α -частицами с энергией Е 0 налетающая частица отклонилась на угол φ = 60° по отношению к направлению ее движения до столкновения. Считая удар абсолютно упругим, определить энергии α -частицы W α и ядра W He после столкновения. Энергия теплового движения атомов гелия много меньше E 0 .

Ответ

W α = 1/4 E 0 ; W He = 3/4 E 0 .

Гладкий шарик из мягкого свинца налетает на такой же шарик, первоначально покоящийся. После столкновения второй шарик летит под углом α к направлению скорости первого шарика до столкновения. Определить угол β , под которым разлетаются шары после столкновения. Какая часть кинетической энергии T перейдет при столкновении в тепло Q ?

Ответ

β = arctg(2tgα ); Q /T = ½cos 2 α .

Шар массой m , движущийся со скоростью v , налетает на покоящийся шар массой m /2 и после упругого удара продолжает двигаться под углом α = 30° к направлению своего первоначального движения. Найти скорости шаров после столкновения.



На рисунке изображены графики зависимости импульса от скорости движения двух тел. Масса какого тела больше и во сколько раз?

1) Массы тел одинаковы

2) Масса тела 1 больше в 3,5 раза

3) Масса тела 2 больше

4) По графикам нельзя

сравнить массы тел





Пластилиновый шарик массой т, движущийся со скоростью V , налетает на покоящийся пластилиновый шарик массой 2т. После удара шарики, слипшись, движутся вместе. Какова скорость их движения?

1) v /3

3) v /2

4) Для ответа не хватает данных


Вагоны массой m = 30 т и m = 20 т движутся по прямолинейному железнодорожному пути со скоростями, зависимость проекций которых на ось, параллельную путям, от времени показана на рисунке. Через 20 с между вагонами произошла автосцепка. С какой скоростью, и в какую сторону поедут сцепленные вагоны?

1) 1,4 м/с, в сторону начального движения 1.

2) 0,2 м/с, в сторону начального движения 1.

3) 1,4 м/с, в сторону начального движения 2 .

4) 0,2 м/с, в сторону начального движения 2 .


Энергия (Е) – физическая величина, показывающая, какую работу может совершить тело

Совершенная работа – равна изменению энергии тела



Координата тела меняется в соответствии с уравнением x : = 2 + 30 t - 2 t 2 , записанным в СИ. Масса тела 5 кг. Какова кинетическая энергия тела через 3 с после начала движения?

1) 810 Дж

2) 1440 Дж

3) 3240 Дж

4) 4410 Дж




Пружину растягивают на 2см . При этом совершается работа 2 Дж. Какую следует совершить работу, чтобы растянуть пружину еще на 4 см.

1) 16 Дж

2) 4 Дж

3) 8 Дж

4) 2 Дж




По какой из формул можно определить кинетическую энергию Е к, которую имеет тело в верхней точке траектории (см.рис.)?

2) E K =m(V 0) 2 /2 + mgh-mgH

4) E K =m(V 0) 2 /2 + mgH


Мяч бросали с балкона 3 раза с одинаковой начальной скоростью. Первый раз вектор скорости мяча был направлен вертикально вниз, второй раз - вертикально вверх, третий раз - горизонтально. Сопротивлением воздуха пренебречь. Модуль скорости мяча при подлете к земле будет:

1) больше в первом случае

2) больше во втором случае

3) больше в третьем случае

4) одинаковым во всех случаях


Парашютист равномерно опускается из точки 1 в точку 3 (рис.). В какой из точек траектории его кинетическая энергия имеет наибольшее значение?

1) В точке 1.

2) В точке 2 .

3) В точке 3.

4) Во всех точках значения

энергии одинаковы.


Съехав со склона оврага, санки поднимаются по противоположному его склону на высоту 2 м (до точки 2 на рисунке) и останавливаются. Масса санок 5 кг. Их скорость на дне оврага была равна 10 м/с. Как изменилась полная механическая энергия санок при движении из точки 1 в точку 2?

1) Не изменилась.

2) Возросла на 100 Дж.

3) Уменьшилась на 100 Дж.

4) Уменьшилась на 150 Дж.



Механической энергии.

Зависимости импульса от скорости движения двух тел. Масса какого тела больше и во сколько раз? 1) Массы тел одинаковы 2) Масса тела 1больше в 3,5 раза 3) Масса тела 2больше в 3,5 раза 4) По графикам нельзя сравнить массы тел

Движущийся со скоростью v, налетает на покоящийся пластилиновый шарик массой 2т. После удара шарики, слипшись, движутся вместе. Какова скорость их движения? 1) v/3 2) 2v/3 3) v/2 4) Для ответа не хватает данных

Движутся по прямолинейному железнодорожному пути со скоростями, зависимость проекций которых на ось, параллельную путям, от времени показана на рисунке. Через 20 с между вагонами произошла автосцепка. С какой скоростью, и в какую сторону поедут сцепленные вагоны? 1) 1,4 м/с, в сторону начального движения 1. 2) 0,2 м/с, в сторону начального движения 1. 3) 1,4 м/с, в сторону начального движения 2. 4) 0,2 м/с, в сторону начального движения 2.

Величина, показывающая, какую работу может совершить тело Совершенная работа – равна изменению энергии тела

Соответствии с уравнением x: = 2 + 30 t - 2 t2, записанным в СИ. Масса тела 5 кг. Какова кинетическая энергия тела через 3 с после начала движения? 1) 810 Дж 2) 1440 Дж 3) 3240 Дж 4) 4410 Дж

Деформированного тела

Этом совершается работа2 Дж. Какую следует совершить работу, чтобы растянуть пружину еще на 4 см. 1) 16 Дж 2) 4 Дж 3) 8 Дж 4) 2 Дж

Определить кинетическую энергию Ек, которую имеет тело в верхней точке траектории (см.рис.)? 1) EK=mgH 2) EK=m(V0)2/2 + mgh-mgH 3) EK=mgH-mgh 4) EK=m(V0)2/2 + mgH

Одинаковой начальной скоростью. Первый раз вектор скорости мяча был направлен вертикально вниз, второй раз - вертикально вверх, третий раз - горизонтально. Сопротивлением воздуха пренебречь. Модуль скорости мяча при подлете к земле будет: 1) больше в первом случае 2) больше во втором случае 3) больше в третьем случае 4) одинаковым во всех случаях

Фотография установки по исследованию скольжения каретки массой 40 г по наклонной плоскости под углом 30º. В момент начала движения верхний датчик включает секундомер. При прохождения кареткой нижнего датчика секундомер выключается. Оцените количество теплоты, которое выделилось при скольжении каретки по наклонной плоскости между датчиками.

Опускается из точки 1в точку 3 (рис.). В какой из точек траектории его кинетическая энергия имеет наибольшее значение? 1) В точке 1. 2) В точке 2. 3) В точке 3. 4) Во всех точках значения энергии одинаковы.

Поднимаются по противоположному его склону на высоту 2 м (до точки 2 на рисунке) и останавливаются. Масса санок 5 кг. Их скорость на дне оврага была равна 10 м/с. Как изменилась полная механическая энергия санок при движении из точки 1в точку 2? 1) Не изменилась. 2) Возросла на 100 Дж. 3) Уменьшилась на 100 Дж. 4) Уменьшилась на 150 Дж. 2