Реактивный двигатель: современные варианты исполнения. Исследование маневренности самолета Для этих самолётов характерны

Реактивный двигатель: современные варианты исполнения. Исследование маневренности самолета Для этих самолётов характерны
Реактивный двигатель: современные варианты исполнения. Исследование маневренности самолета Для этих самолётов характерны

Основные понятия

Устойчивость и управляемость относятся к числу особенно важных физических свойств самолета. От них в значительной мере зависят безопасность полетов, простота и точность пилотирования и полная реализация летчиком технических возможностей самолета.

При изучении устойчивости и управляемости самолета его представляют как тело, движущееся поступательно под действием внешних сил и вращающееся под действием моментов этих сил.

Для установившегося полёта необходимо, чтобы силы и моменты были взаимно уравновешены.

Если по каким-то причинам это равновесие нарушается, то центр масс самолёта станет совершать неравномерное движение по криволинейной траектории, а сам самолёт начнёт вращаться.

Осями вращения самолёта принято считать оси связанной системы координат с началом координат
в центре масс самолета. Ось ОХ располагается в плоскости симметрии самолета и направлена по его продольной оси. Ось ОУ перпендикулярна оси ОХ, а ось ОZ перпендикулярна плоскости ХОУ и направлена
в сторону правого полукрыла.

Моменты, вращающие самолет вокруг этих осей, имеют следующие названия:

М х – момент крена или поперечный момент;

М Y – момент рысканья или путевой момент;

М z – момент тангажа или продольный момент.

Момент М z , увеличивающий угол атаки, называется кабрирующим, а момент М z , вызывающий уменьшение угла атаки, - пикирующим.

Рис. 6.1. Моменты, действующие на самолет

Для определения положительного направления моментов используется следующее правило:

если из начала координат направить взгляд вдоль положительного направления соответствующей оси, то вращение по часовой стрелке будет положительным.

Таким образом,

· момент М z положителен в случае кабрирования,

· момент М х положителен в случае крена на правое полукрыло,

· момент М Y положителен при развороте самолета влево.

Положительному отклонению руля соответствует отрицательный момент и наоборот. Следовательно, за положительное отклонение рулей следует считать:

· руль высоты – вниз,

· руль поворота – вправо,

· правый элерон – вниз.

Положение самолета в пространстве определяется тремя углами – тангажа, крена и рысканья.

Углом крена называется угол между линией горизонта и осью ОZ,

углом скольжения – угол между вектором скорости и плоскостью симметрии самолета,

углом тангажа – угол между хордой крыла или осью фюзеляжа и линией горизонта.

Угол крена положителен, если самолет находится в правом крене.

Угол скольжения положителен при скольжении на правое полукрыло.

Угол тангажа считается положительным, если нос самолета поднят над горизонтом.

Равновесием называется такое состояние самолёта, при котором все силы и моменты, действующие на него, взаимно уравновешены и самолёт совершает равномерное прямолинейное движение.

Из механики известны 3 вида равновесия:

a) устойчивое б) безразличное в) неустойчивое;

Рис. 6.2. Виды равновесия тела

В таких же видах равновесия может находиться
и самолёт.

Продольное равновесие - это состояние, при котором самолёт не имеет стремления к изменению угла атаки.

Путевое равновесие - самолёт не имеет стремления к изменению направления полёта.

Поперечное равновесие - самолёт не имеет стремления к изменению угла крена.

Равновесие самолёта может быть нарушено из-за:

1) нарушения режимов работы двигателя или их отказа в полёте;

2) обледенения самолёта;

3) полёта в неспокойном воздухе;

4) несинхронного отклонения механизации;

5) разрушения частей самолёта;

6) срывного обтекания крыла, оперения.

Обеспечение определённого положения летящего самолёта по отношению к траектории движения или по отношению к земным предметам называется балансировкой самолёта.

В полёте балансировка самолёта достигается отклонением органов управления.

Устойчивостью самолёта называется его способность самостоятельно без вмешательства лётчика восстанавливать случайно нарушенное равновесие.

По словам Н.Е.Жуковского устойчивость - это прочность движения.

Для практики летной эксплуатации балансировка
и устойчивость самолёта не равноценны. На самолёте, на котором не обеспечена балансировка, летать нельзя, тогда как на неустойчивом самолёте полёт возможен.

Оценка устойчивости движения самолета производится с помощью показателей статической и динамической устойчивости.

Под статической устойчивостью понимается его тенденция к восстановлению исходного равновесного состояния после случайного нарушения равновесия. Если при нарушении равновесия возникают силы
и моменты, стремящиеся восстановить равновесие, то самолет статически устойчив.

При определении динамической устойчивости оценивается уже не начальная тенденция к устранению возмущения, а характер протекания возмущенного движения самолета. Для обеспечения динамической устойчивости возмущенное движение самолета должно быть быстро затухающим.

Таким образом, самолет устойчив при наличии:

· статической устойчивости;

· хороших демпфирующих свойств самолета, способствующих интенсивному затуханию его колебаний в возмущенном движении.

К количественным показателям статической устойчивости самолета относятся степень продольной, путевой и поперечной статической устойчивости.

К характеристикам динамической устойчивости относятся показатели качества процесса уменьшения (затухания) возмущений: время затухания отклонений, максимальные значения отклонений, характер движения в процессе уменьшения отклонений.

Под управляемостью самолёта понимается его способность исполнять по воле лётчика любой маневр, предусмотренный техническими условиями для данного типа самолёта.

От управляемости самолета в значительной мере зависит и его маневренность.

Маневренностью самолета называют его способность изменять за определенный промежуток времени скорость, высоту и направление полета.

Управляемость самолета тесно связана с его устойчивостью. Управляемость при хорошей устойчивости обеспечивает летчику простоту управления, а в случае необходимости позволяет быстро исправить случайную ошибку, допущенную в процессе управления,
а также легко возвратить самолет к заданным условиям балансировки при воздействии на него внешних возмущений.

Устойчивость и управляемость самолета должны находиться в определенном соотношении.

Если самолет обладает большой устойчивостью,
то усилия при управлении самолетом чрезмерно велики и пилот при маневрировании будет быстро
утомляться. О таком самолете говорят, что он тяжел в управлении.

Излишне легкое управление также недопустимо, так как затрудняет точное дозирование отклонений рычагов управления и может вызвать раскачку самолета.

Балансировка, устойчивость и управляемость самолёта разделяется на продольную и боковую.

Боковая устойчивость и управляемость подразделяются на поперечную и путевую (флюгерную).

Продольная устойчивость

Продольной устойчивостью называется способность самолёта без вмешательства пилота восстанавливать нарушенное продольное равновесие (устойчивость относительно ОZ)

Продольная устойчивость обеспечивается:

1) соответствующими размерами горизонтального оперения г.о., площадь которого зависит от площади крыла;

2) плечом горизонтального оперения L г.о, т.е. расстоянием от центра масс самолёта до центра давления г.о.

3) Центровкой , т.е. расстоянием от носка средней аэродинамической хорды (САХ) до центра масс самолёта, выраженным в процентах от величины САХ:


Рис. 6.3. Определение средней аэродинамической хорды

САХ (b a ) - хорда некоторого условного прямоугольного крыла, которое при такой же, как у реального крыла, площади имеет такие же коэффициенты аэродинамических сил и моментов.

Величину и положение САХ чаще всего находят графически.

Положение центра масс самолёта, а значит, его центровки зависит от:

1) загрузки самолёта и изменения этой нагрузки в полёте;

2) размещения пассажиров и выработки топлива.

При уменьшении центровки увеличивается устойчивость, но уменьшается управляемость.

При увеличении центровки уменьшается устойчивость, но увеличивается управляемость.

Поэтому передний предел центровок устанавливается из условия получения безопасной посадочной скорости и достаточной управляемости, а задний предел - из условия обеспечения достаточной устойчивости.

Обеспечение продольной устойчивости по углу атаки

Нарушение продольного равновесия выражается
в изменении угла атаки и скорости полета, причем угол атаки изменяется значительно быстрее, чем скорость. Поэтому в первый момент после нарушения равновесия проявляется устойчивость самолета по углу атаки (по перегрузке).

При нарушении продольного равновесия самолета угол атаки изменяется на величину и вызывает изменение подъемной силы на величину , которая складывается из приращений подъемной силы крыла и горизонтального оперения:

Крыло и самолёт в целом обладают важным свойством, заключающимся в том, что при изменении угла атаки происходит такое перераспределение аэродинамической нагрузки, что равнодействующая его прироста проходит через одну и ту же точку F, удалённую от носка САХ на расстояние Х f .

Рис.6.4. Обеспечение продольной устойчивости самолета

Точка приложения приращения подъемной силы , вызванного изменением угла атаки при неизменной скорости, называется фокусом .

Степень продольной статической устойчивости
самолета определяется взаимным расположением центра масс и фокуса самолета.

Положение фокуса при безотрывном обтекании не зависит от угла атаки.

Положение центра масс, т.е. центровка самолета, определяется в процессе проектирования компоновкой самолета, а при эксплуатации – заправкой или выработкой топлива, загрузкой и т.п. Меняя центровку самолета, можно изменять степень его продольной статической устойчивости. Существует определенный диапазон центровок, в пределах которого можно размещать центр масс самолета.

Если грузы на самолете разместить так, чтобы центр масс самолета совпадал с его фокусом, самолет будет безразличен к нарушению равновесия. Центровка в этом случае называется нейтральной .

Смещение центра масс относительно нейтральной центровки вперед обеспечивает самолету продольную статическую устойчивость, а смещение ц.м. назад делает его статически неустойчивым.

Таким образом, для обеспечения продольной устойчивости самолета его центр масс должен находиться впереди фокуса.

В этом случае при случайном изменении угла атаки появляется стабилизирующий момент a, возвращающий самолет на заданный угол атаки (рис.6.4).

Для смещения фокуса за центр масс и применяют горизонтальное оперение.

Расстояние между центром масс и фокусом, выраженное в долях САХ, называется запасом устойчивости по перегрузке или запасом центровки :

Существует минимально-допустимый запас устойчивости, который должен быть равен не менее 3% САХ.

Положение ц.м., при котором обеспечивается минимально-допустимый запас центровки, называется предельно задней центровкой . При такой центровке самолет еще обладает устойчивостью, обеспечивающей безопасность полета. Разумеется, что задняя
эксплуатационная центровка должна быть меньше предельно допустимой.

Допустимое смещение ц.м. самолета вперед определяется по условиям балансировки самолета.
Наихудшим в смысле балансировки является режим захода на посадку при малых скоростях, предельно допустимых углах атаки и выпущенной механизации.
Поэтому предельно передняя центровка определяется из условия обеспечения балансировки самолета на посадочном режиме.

Для неманевренных самолетов величина запаса центровки должна составлять 10–12% САХ.

При переходе с дозвуковых режимов на сверхзвуковые фокус самолета смещается назад, запас центровки увеличивается в несколько раз и продольная статическая устойчивость резко возрастает.

Балансировочные кривые

Величина продольного момента М z , возникающего при нарушении продольного равновесия, зависит от изменения угла атаки Δα. Эта зависимость называется балансировочной кривой .


Мz

Рис. 6.5. Балансировочные кривые:

а) устойчивый самолет, б) безразличный самолет,
в) неустойчивый самолет

Угол атаки, при котором M z = 0, называется балансировочным углом атаки α .

На балансировочном угле атаки самолёт находится в состоянии продольного равновесия.

На углах устойчивый самолет создает стабилизирующий момент - (момент пикирования), неустойчивый – дестабилизирующий + , безразличный самолет не создает , т.е. имеет множество балансировочных углов атаки.

Путевая устойчивость самолета

Путевая (флюгерная) устойчивость – это способность самолета без вмешательства пилота устранять скольжение, т. е. устанавливаться «против потока», сохраняя заданное направление движения.

Рис. 6.6. Путевая устойчивость самолета

Обеспечивается путевая устойчивость соответствующими размерами вертикального оперения S в.о.
и плечом вертикального оперения L в.о, т.е. расстоянием от центра давления в.о. до центра масс самолета.

Под действием М возм самолет вращается вокруг оси OY, но его ц.м. по инерции сохраняет еще направление движения и самолет обтекается потоком под
углом скольжения β. В результате несимметричного обтекания возникает боковая сила Z, приложенная
в боковом фокусе. Самолет под действием силы Z стремится развернуться подобно флюгеру в сторону крыла, на которое он скользит.

В.о. смещает боковой фокус за ц.м. самолета. Этим обеспечивается создание стабилизирующего путевого момента ΔM Y =Zb.

Степень путевой статической устойчивости определяется величиной производной коэффициента момента рысканья по углу скольжения m .

Физически m определяет величину прироста коэффициента момента рысканья, если угол скольжения изменяется на 1 .

У самолета, обладающего путевой устойчивостью он отрицателен. Таким образом, при скольжении на правое крыло (положительное ), появляется путевой момент, вращающий самолет вправо, т.е. коэффициент m отрицательный.

Изменение угла атаки, выпуск механизации незначительно влияют на путевую устойчивость. В диапазоне чисел М от 0,2 до 0,9 степень путевой устойчивости практически не меняется.

Реактивными двигателями называют такие устройства, которые создают нужную для процесса движения силу тяги преобразованием внутренней энергии горючего в кинетическую энергию реактивных струй в рабочем теле. Рабочее тело стремительно проистекает из двигателя, и по закону сохранения импульса формируется реактивная сила, которая толкает двигатель в противолежащем направлении. Чтобы разогнать рабочее тело может применяться как расширение газов, нагретых самыми разнообразными способами до высоких температур, а также и другими физическими процессами, в частности, ускорением заряженных частиц в электростатическом поле.

Реактивные двигатели сочетают в себе собственно двигатели с движителями. Имеется в виду, что они создают тяговые усилия исключительно взаимодействием с рабочими телами, без опор, либо контактами с остальными телами. То есть обеспечивают сами себе собственное продвижение, при этом промежуточные механизмы не принимают никакого участия. Вследствие этого в основном они используются для того, чтобы приводить в движение воздушные судна, ракеты и, конечно же, космические аппараты.

Что такое тяга двигателя?

Тягой двигателей называют реактивную силу, которая проявляется газодинамическими силами, давлением и трением, приложенными к внутренним и внешним сторонам двигателя.

Тяги различаются на:

  • Внутренние (реактивные тяги), когда не учитывается внешнее сопротивление;
  • Эффективные, учитывающие внешнее сопротивление силовых установок.

Отправная энергия запасается на борту летательных или других аппаратов, оснащенных реактивными двигателями (химическим горючим, ядерным топливом), или может притекать снаружи (например, солнечная энергия).

Как формируется реактивная тяга?

Для формирования реактивной тяги (тяги двигателя), которая используется реактивными двигателями, потребуются:

  • Источники исходной энергии, которые превращаются в кинетическую энергию реактивных струй;
  • Рабочие тела, которые в качестве реактивных струй будут выбрасываться из реактивных двигателей;
  • Сам реактивный двигатель в качестве преобразователя энергии.

Как получить рабочее тело?

Для приобретения рабочего тела в реактивных двигателях могут использоваться:

  • Вещества, отбираемые из окружающей среды (к примеру, вода, либо воздух);
  • Вещества, находящиеся в баках аппаратов или в камерах реактивных двигателей;
  • Смешанные вещества, поступающие из окружающей среды и запасаемые на бортах аппаратов.

Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Кратко об истории реактивного двигателя

Считается, что реактивный двигатель изобрели Ганс фон Охайн и выдающийся немецкий инженер-конструктор Фрэнк Виттл. Первый патент на действующий газотурбинный двигатель получил именно Фрэнк Виттл в 1930 году. Тем не менее, первая рабочая модель была собрана собственно Охайном. В конце лета 1939 года в небе появилось первое реактивное воздушное судно – He-178 (Хейнкель-178), который был снаряжен двигателем HeS 3, разработанным Охайном.

Как устроен реактивный двигатель?

Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать. На краю турбины образуется так называемое «рабочее тело» (ранее упоминаемая реактивная струя), которое продвигает летательный или космический аппарат.

При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.

В начале, перед каждой турбиной всегда располагается вентилятор, засасывающий воздушные массы из окружающей среды в турбины. Вентиляторы обладают большой площадью, а также колоссальной численностью лопастей специальных конфигураций, материалом для которых послужил титан. Сразу за вентиляторами располагаются мощные компрессоры, которые необходимы для нагнетания воздуха под огромным давлением в камеры сгорания. После камер сгорания горящие топливовоздушные смеси направляются в саму турбину.

Турбины состоят из множества лопаток, на которые оказывают давление реактивные потоки, которые и приводят турбины во вращение. Далее турбины вращают валы, на которых «насажены» вентиляторы и компрессоры. Собственно так, система становится замкнутой и нуждается исключительно в подводе топлива и воздушных масс.

Вслед за турбинами потоки направляются в сопла. Сопла реактивных двигателей являются последними, но не самыми последними по своей значимости частями в реактивных двигателях. Они формируют непосредственные реактивные струи. В сопла направляются холодные воздушные массы, нагнетаемые вентиляторами для охлаждения «внутренностей» двигателей. Эти потоки ограничивают манжеты сопел от сверхгорячих реактивных потоков и не позволяют им расплавляться.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Типы реактивных двигателей

Имеется несколько основных разновидностей реактивных двигателей. Так, классическим реактивным двигателем можно назвать авиадвигатель в самолете F-15. Большинство таких двигателей используются преимущественно на истребителях самых разнообразных модификаций.

Двухлопастные турбовинтовые двигатели

В этой разновидности турбовинтовых двигателей мощность турбин через понижающие редукторы направляется для вращения классических винтов. Наличие таких двигателей позволяет большим воздушным суднам осуществлять полеты с максимально приемлемыми скоростями и при этом расходовать меньшее количество авиатоплива. Нормальная крейсерская скорость у турбовинтовых воздушных суден может быть 600-800 км/ч.

Турбовентиляторные реактивные двигатели

Эта разновидность двигателей является более экономичной в семействе двигателей классических типов. Главной отличительной характеристикой в них является то, что на входе ставятся вентиляторы больших диаметров, которые подают воздушные потоки не только для турбин, но и создают довольно-таки мощные потоки вне их. Вследствие этого, можно достичь повышенной экономичности, путем усовершенствования КПД. Они используются на лайнерах и больших воздушных суднах.

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

Маневренностью самолета называется его способность изменять вектор скорости полета по величине и направлению.

Маневренные свойства реализуются летчиком при боевом маневрировании, которое состоит из отдельных законченных или незаконченных фигур пилотажа, непрерывно следующих друг за другом.

Маневренность является одним из важнейших качеств боевого самолета любого рода авиации. Она позволяет успешно вести воздушный бой, преодолевать ПВО противника, атаковать наземные цели, строить, перестраивать и распускать боевой порядок (строй) самолетов, выводить на объект в заданное время и т. д.

Особое и, можно сказать, решающее значение имеет маневренность для фронтового истребителя, ведущего воздушный бой с истербителем (истребителем-бомбардировщиком) противника. Действительно, заняв выгодное тактическое положение по отношению к противнику, можно его сбить одной-двумя ракетами или огнем даже из единственной пушки. Наоборот, если выгодное положение займет противник (например, «повиснет на хвосте»), то в такой ситуации не поможет любое количество ракет и пушек. Высокая маневренность позволяет также производить успешный выход из воздушного боя и отрыв от противника.

ПОКАЗАТЕЛИ МАНЕВРЕННОСТИ

В самом общем случае маневренность самолета можно полностью охарактеризовать секундным векторным приращением скорости. Пусть в начальный момент времени величина и направление скорости самолета изображается вектором V1 (рис. 1), а через одну секунду - вектором V2; тогда V2=V1+ΔV, где ΔV - секундное векторное приращение скорости.

Рис. 1. Секундное векторное приращение скорости

На рис. 2 изображена область возможных секундных векторных приращений скорости для некоторого самолета при его маневре в горизонтальной плоскости. Физический смысл графика состоит в том, что через одну секунду конца векторов ΔV и V2 могут оказаться только внутри области, ограниченной линией а-б-в-г-д-е. При располагаемой тяге двигателей Рр конец вектора ΔV может оказаться только на границе а-б-в-г, на которой можно отметить следующие возможные варианты маневрирования:

  • а - разгон по прямой,
  • б - разворот с разгоном,
  • в - установившийся разворот,
  • г - форсированный разворот с торможением.

При нулевой тяге и выпущенных тормозных щитках конец вектора ΔV может оказаться через секунду только на границе д-е, например, в точках:

  • д - энергичный разворот с торможением,
  • е - торможение по прямой.

При промежуточной тяге конец вектора ΔV может оказаться в любой точке между границами а-б-в-г и д-е. Отрезок г-д соответствует разворотам при Сyдоп с различной тягой.

Непонимание того факта, что маневренность определяется секундным векторным приращением скорости, т. е. величиной ΔV, иногда приводит к неправильной оценке того или иного самолета. Например, перед войной 1941-1945 гг. некоторые летчики считали, что наш старый истребитель И-16 обладал более высокими маневренными свойствами, чем новые самолеты Як-1, МиГ-3 и ЛаГГ-3. Однако в маневренных воздушных боях Як-1 проявил себя лучше, чем И-16. В чем дело? Оказывается, И-16 мог быстро «поворачиваться», но его секундные приращения ΔV были гораздо меньше, чем у Як-1 (рис. 3); т. е. фактически Як-1 обладал более высокими маневренными свойствами, если вопрос не рассматривать узко, с точки зрения только одной «поворотливости». Аналогично можно показать, что, например, самолет МиГ-21 маневреннее самолета МиГ-17.

Области возможных приращений ΔV (рис. 2 и 3) хорошо иллюстрируют физический смысл понятия маневренности, т. е. дают качественную картину явления, но не позволяют производить количественный анализ, для которого привлекаются различного рода частные и обобщенные показатели маневренности.

Секундное векторное приращение скорости ΔV связано с перегрузками следующей зависимостью:

За счет земного ускорения g все самолеты получают одинаковое приращение скорости ΔV (9,8 м/с², вертикально вниз). Боковая перегрузка nz при маневрировании обычно не используется, поэтому маневренность самолета полностью характеризуется двумя перегрузками - nx и ny (перегрузка - векторная величина, но в дальнейшем знак вектора «->» будет опускаться).

Перегрузки nх и nу являются, таким образом, общими показателями маневренности .

С этими перегрузками связаны все частные показатели:

  • rг - радиус разворота (виража) в горизонтальной плоскости;
  • wг - угловая скорость разворота в горизонтальной плоскости;
  • rв - радиус маневра в вертикальной плоскости;
  • время разворота на заданный угол;
  • wв - угловая скорость поворота траектории в вертикальной плоскости;
  • jx - ускорение в горизонтальном полете;
  • Vy - вертикальная скорость при установившемся подъеме;
  • Vyэ - скорость набора энергетической высоты и пр.

ПЕРЕГРУЗКИ

Нормальной перегрузкой ny называется отношение алгебраической суммы подъемной силы и вертикальной составляющей силы тяги (в поточной системе координат) к весу самолета:

Примечание 1. При движении по земле в создании нормальной перегрузки участвует и сила реакции земли.

Примечание 2. Самописцы САРПП регистрируют перегрузки в связанной системе координат, в которой

На самолетах обычной схемы величина Ру сравнительно мала и ею пренебрегают. Тогда нормальной перегрузкой будет отношение подъемной силы к весу самолета:

Располагаемой нормальной перегрузкой nyр называется наибольшая перегрузка, которую можно использовать в полете с соблюдением условий безопасности.

Если в последнюю формулу подставить располагаемый коэффициент подъемной силы Cyр, то полученная перегрузка и будет располагаемой.

nyр=Cyр*S*q/G (2)

В полете величина Cyр, как уже условились, может ограничиваться по сваливанию, тряске, подхвату (и тогда Cyр=Cyдоп) или по управляемости (и тогда Cyр=Cyf). Кроме того, величина nyр может ограничиваться по условиям прочности самолета, т. е. в любом случае nyр не может быть больше максимальной эксплуатационной перегрузки nyэ макс.

К названию перегрузки nyр иногда добавляют слово «кратковременная».

Используя формулу (2) и функцию Cyр(M) можно получить зависимость располагаемой перегрузки nyр от числа М и высоты полета, которая изображена графически на рис. 4 (пример). Заметим, что содержание рисунков 4,а и 4,6 совершенно одинаковое. Верхний график обычно используется для различных расчетов. Однако для летного состава удобнее график в координатах М-Н (нижний), на котором линии постоянных располагаемых перегрузок проведены прямо внутри диапазона высот и скоростей полета самолета. Проанализируем рис. 4,6.

Линия nyр=1, очевидно, является уже известной нам границей горизонтального полета. Линия nyр=7 является границей, правее и ниже которой может произойти превышение максимальной эксплуатационной перегрузки (в нашем примере nyэ макс=7).

Линии постоянных располагаемых перегрузок проходят таким образом, что nyp2/nyp1=p2/p1 т. е. между двумя любыми линиями разница в высоте такова, что отношение давлений равно отношению перегрузок.

Исходя из этого, располагаемую перегрузку можно найти, имея на диапазоне высот и скоростей только одну границу горизонтального полета.

Пусть, например, требуется определить nyр при М=1 и H=14 км (в точке А на рис. 4,6). Решение: находим высоту точки В (20 км) и давление на этой высоте (5760 Н/м2), а также давление на заданной высоте 14 км (14 750 Н/м2); искомая перегрузка в точке А будет nyр=14 750/5760 = 2,56.

Если известно, что график на рис. 4 построен для веса самолета G1 а нам требуется располагаемая перегрузка для веса G2, то пересчет производится по очевидной пропорции:

Вывод. Имея границу горизонтального полета (линию nyp1=1), построенную для веса G1, можно определить располагаемую перегрузку на любой высоте и скорости полета для любого веса G2, используя пропорцию

nyp2/nyp1=(p2/p1)*(G1/G2) (3)

Но в любом случае используемая в полете перегрузка не должна быть больше максимальной эксплуатационной. Строго говоря, для самолета, подверженного в полете большим деформациям, формула (3) не всегда справедлива. Однако к самолетам-истребителям это замечание обычно не относится. По величине nyp при самых энергичных неустановившихся маневрах можно определить такие частные характеристики маневренности самолета, как текущие радиусы rг и rв, текущие угловые скорости wг и wв.

Предельной по тяге нормальной перегрузкой nyпр называется такая наибольшая перегрузка, при которой лобовое сопротивление Q становится равным тяге Рр и при этом nx=0. К названию этой перегрузки иногда добавляют слово «длительная».

Вычисляется предельная по тяге перегрузка следующим образом:

  • для заданной высоты и числа М находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при nyпр имеем Pр=Q=Cx*S*q, откуда можно найти Сх;
  • из сетки поляр по известным М и Сx находим Су;
  • вычисляем подъемную силу Y=Су*S*q;
  • вычисляем перегрузку ny=Y/G, которая и будет предельной по тяге, так как при расчетах мы исходили из равенства Рр=Q.

Второй метод расчета применяется, когда поляры самолета есть квадратичные параболы и когда вместо этих поляр в описании самолета даются кривые Сх0(М) и А(М):

  • находим тягу Рр;
  • запишем Рр = Cр*S*q, где Ср коэффициент тяги;
  • по условию имеем Рр = Ср*S*q=Q=Cх*Q*S*q+(A*G²n²yпр)/(S*q), откуда:

Индуктивное сопротивление пропорционально квадрату перегрузки, т. е. Qи=Qи¹*ny² (где Qи¹ - индуктивное сопротивление при nу=1). Поэтому, исходя из равенства Рр=Qo+Qи, можно записать выражение для предельной перегрузки и в таком виде:

Зависимость предельной перегрузки от числа М и высоты полета изображена графически на рис. 5.5 (пример взят из книги ).

Можно заметить, что линий nyпр=1 на рис. 5. является уже известной нам границей установившегося горизонтального полета.

В стратосфере температура воздуха постоянна и тяга пропорциональна атмосферному давлению, т. е. Рp2/Рp1=р2/p1 (здесь коэффициент тяги Ср=const), поэтому в соответствии с формулой (5.4) при заданном числе М в стратосфере имеет место пропорция:

Следовательно, предельную по тяге перегрузку на любой высоте более 11 км можно определить по давлению р1 на линии статических потолков, где nyпр1=1. Ниже 11 км пропорция (5.6) не соблюдается, так как тяга при уменьшении высоты полета растет медленнее, чем давление (вследствие увеличения температуры воздуха), и величина коэффициента тяги Ср падает. Поэтому для высот 0-11 км расчет предельных по тяге перегрузок приходится производить обычным порядком, т. е. с использованием высотно-скоростных характеристик двигателя.

По величине nyпр можно найти такие частные характеристики маневренности самолета, как радиус rг, угловую скорость wг, время tf установившегося виража, а также г, w и t любого маневра, выполняемого при постоянной энергии (прл Pр=Q).

Продольной перегрузкой nх называется отношение разности между силой тяги (считая Рх=Р) и лобовым сопротивлением к весу самолета

Примечание При движении по земле к сопротивлению следует добавить еще и силу трения колес.

Если в последнюю формулу подставить располагаемую тягу двигателей Рр, то получим так называемую располагаемую продольную перегрузку :

Рис. 5.5. Предельные по тяге перегрузки самолета F-4C «Фантом»; форсаж, масса 17,6 m

Расчет располагаемой продольной перегрузки при произвольном значении nу производим следующим образом:

  • находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при заданной нормальной перегрузке ny вычисляем лобовое сопротивление следующим путем:
    ny->Y->Сy->Сx->Q;
  • по формуле (5.7) вычисляем nxр.

Если поляра - квадратичная парабола, то можно воспользоваться выражением Q=Q0+Qи¹*ny², в результате чего формула (5.7) примет вид

Вспомним, что при ny=nyпр ямеет место равенство

Подставив это выражение в предыдущее и разервув получим окончательную формулу

Если нас интересует величина располагаемой продольной перегрузки для горизонтального полета, т. е. для ny=1, то формула (5.8) приобретает вид

На рис. 5.6 в качестве примера приведена зависимость nxр¹ от М и Н для самолета F-4C «Фантом». Можно заметить, что кривые nxр¹(M, Н) в другом масштабе примерно повторяют ход кривых nyпр(М, Н), а линия nxр¹=0 точно совпадает с линией nyпр=1. Это и понятно, так как обе эти перегрузки связаны с тяговооруженностью самолета.

По величине nxр¹ можно определить такие частные характеристики маневренности самолета, как ускорение при горизонтальном разгоне jx, вертикальную скорость установившегося подъема Vy, скорость набора энергетической высоты Vyэ в неустановившемся прямолинейном подъеме (снижении) с изменением скорости.

Рис 5 6 Располагаемые продольные перегрузки в горизонтальном полете самолета F-4C «Фантом»; форсаж, масса 17,6 т

8. Все рассмотренные характерные перегрузки (пУ9, пупр, Я*Р> ^лгр1) часто изображаются в виде графика, приведенного на рис. 5.7. Он называется графиком обобщенных характеристик маневренности самолета. По рис. 5.7 для заданной высоты Hi при любом числе М можно найти пур (на линии Сур или п^макс). %Пр (на горизонтальной оси, т. е. при пхр = 0), Лхр1 (при пу=) и пХ9 (при любой перегрузке пу). Обобщенные характеристики наиболее удобны для различного рода расчетов, так как с них можно непосредственно снять любую величину, но они не наглядны ввиду многочисленности этих графиков и кривых на них (для каждой высоты нужно иметь отдельный график, подобный изображенному на рис. 5.7). Рис 5 7 Обобщенные характеристики маневренности самолета на высоте Hi (пример) Чтобы составить полное и наглядное представление о маневренности самолета, достаточно иметь три графиками р (М, Н) -как на рис. 5.4,6; пупр (М, Н) -как на рис. 5.5,6; пх р1 (М, Н) - как на рис. 5 6,6.

В заключение рассмотрим вопрос о влиянии эксплуатационных факторов на располагаемую и предельную по тяге нормальные перегрузки и на располагаемую продольную перегрузку

Влияние веса

Как это видно из формул (5.2) и (5.4), располагаемая нормальная перегрузка пур и предельная по тяге нормальная перегрузка nyпр изменяются обратно пропорционально весу самолета (при постоянных М и Н).

Если задана перегрузка ny, то при увеличении веса самолета продольная располагаемая перегрузка nxр уменьшается в соответствии с формулой (5.7), но простой обратной пропорциональности здесь не наблюдается, так как при увеличении G возрастает и лобовое сопротивление Q.

Влияние внешних подвесок

На перечисленные перегрузки внешние подвески могут влиять, во-первых, через свой вес и, во-вторых, через дополнительное увеличение безындуктивной части лобового сопротивления самолета.

На располагаемую нормальную перегрузку nyр сопротивление подвесок не влияет, так как эта перегрузка зависит только от величины располагаемой подъемной силы крыла.

Предельная по тяге перегрузка nyпр, как это видно из формулы (5.4), уменьшается, если увеличивается Схо. Чем больше тяга и больше разность Ср - Схо, тем меньше влияние сопротивления подвесок на предельную перегрузку.

Располагаемая продольная перегрузка лхр при возрастании Схо также уменьшается. Влияние Схо на nxр становится относительно больше при увеличении на маневре перегрузки nу.

Влияние атмосферных условий.

Для определенности рассуждений будем рассматривать увеличение температуры на 1 % при стандартном давлении р; плотность воздуха р при этом будет на 1 % меньше стандартной. Откуда:

  • при заданной воздушной скорости V располагаемая (по Сyр) нормальная перегрузка пур упадет примерно на 1%. Но при заданных индикаторной скорости Vи или числе М перегрузка nур при увеличении температуры не изменится;
  • предельная по тяге нормальная перегрузка nyпр при заданном числе М упадет, так как увеличение температуры на 1 % приводит к падению тяги Рр и коэффициента тяги Ср примерно на 2%;
  • располагаемая продольная перегрузка nхр при увеличении температуры воздуха также уменьшится в соответствии с падением тяги.

Включение форсажа (или его выключение)

Очень сильно влияет на предельную по тяге нормальную перегрузку nyпр, и располагаемую продольную перегрузку nхр. Даже на скоростях и высотах, где Рр >> Qг, увеличение тяги, например, в 2 раза приводит к увеличению nупр примерно в sqrt(2) раз и к увеличению nхр¹ (при nу = 1) примерно в 2 раза.

На скоростях и высотах, где разность Рр - Qг мала (например, вблизи статического потолка), изменение тяги приводит к еще более ощутимому изменению и nупр и nхр¹.

Что касается располагаемой (по Сyр) нормальной перегрузки nyр, то величина тяги на нее почти не влияет (считая Рy=0). Но следует учитывать, что при большей тяге самолет на маневре теряет энергию медленее и, следовательно, более длительное время может находиться на повышенных скоростях, на которых располагаемая перегрузка nyр имеет наибольшую величину.

На протяжении всей истории военной авиации скорость, маневр и огонь являлись ключевыми факторами, определяющими боевую эффективность истребителя. Находясь в тесной взаимосвязи, они оказывали решающее влияние на основные направления развития боевой авиационной техники. В то же время на каждом очередном этапе эволюции истребителя при формировании тактико-технических требований, проектировании и освоении новых авиационных комплексов, а также при разработке тактики воздушного боя и удара по наземным объектам решались задачи поиска оптимального соотношения между требованиями повышения скорости, маневренности и мощности авиационного вооружения.

При создании реактивных истребителей второго и третьего поколений — МиГ-21, МиГ-23, Су-15, F-4, «Мираж» III, «Мираж» F.1 и других — основное внимание уделялось улучшению скоростных и высотных характеристик машин, а также эффективности ракетного вооружения. Однако опыт Вьетнама и других вооруженных конфликтов 60-70-х гг. продемонстрировал опасность пренебрежения маневренностью: ближний воздушный бой по-прежнему оставался основной формой «выяснения отношений» между истребителями. В результате ведущим авиационным странам мира пришлось модернизировать существующие типы самолетов в направлении повышения их маневренных характеристик, результатом чего явилось появление таких истребителей, как F-4E, МиГ-21бис, МиГ-23МЛ, «Кфир» и других. Одновременно были развернуты работы по созданию самолетов четвертого поколения (Су-27, МиГ-29, F-15, F-16 и т.д.), основным отличием которых от предшественников явилось резкое увеличение маневренности при сохранении прежних скоростных и высотных характеристик и «эволюционном» усовершенствовании вооружения. Рост маневренности достигался как применением двигателей нового поколения, обеспечивающих возможность получения тяговооруженности более единицы, так и успехами аэродинамики, позволившими значительно увеличить несущие свойства самолета при достаточно малом приращении сопротивления.

Аналитические исследования с широким использованием математического моделирования, выполненные в 70-80-х гг. германскими (фирма МВВ), а несколько позже — американскими специалистами, позволили сделать вывод о том, что к началу XXI века характер воздушного боя между истребителями претерпит новые значительные изменения.
Совершенствование ракетного вооружения и БРЛС приведет к относительному увеличению числа результативных воздушных боев на больших и средних дистанциях. При этом от истребителя потребуется способность маневрировать на сверхзвуковой скорости для уклонения от ракет противника. Если на дальности, превышающей дальность прямой видимости, не будут достигнуты решительные результаты, воздушный бой с большой степенью вероятности перейдет в фазу с использованием УР малой дальности и пушек.

Ожидаемые изменения характера ближнего маневренного боя западными специалистами связывались с появлением всеракурсных ракет с усовершенствованными тепловыми головками самонаведения, позволяющих атаковать противника в передней полусфере на встречных курсах. Моделирование, проведенное в США с использованием программ PACAM, TAC BRAWLER, CATEM, MULTAC, а также в Германии (программа SILCA) показало, что использование новых ракет и пушек в сочетании с независимым управлением ориентацией фюзеляжа и вектором скорости истребителя приведут к тому, что в ближнем воздушном бою будут преобладать лобовые атаки. Для выживания в подобных условиях от самолета потребуется способность к выполнению интенсивных маневров на неустановившихся режимах. При этом уменьшится время действия высоких перегрузок и пространственный размах маневрирования, в то же время возрастут скорости относительного перемещения самолетов, и уменьшится располагаемое время применения оружия.

Особое значение для истребителя приобретет способность на короткое время нацеливать фюзеляж независимо от направления полета, особенно в плоскости тангажа. Во многих случаях такое нацеливание будет связано с выходом на закритические углы атаки.
Таким образом, по взглядам, сложившимся на Западе в середине 80-х гг., истребитель пятого поколения должен был иметь высокие характеристики в двух сильно различающихся полетных областях. При ведении боя на «вневизуальной» дальности особое значение приобретало увеличение сверхзвуковой скорости маневрирования на установившихся режимах, а в ближнем маневренном воздушном бою — увеличение маневренности, обусловленное запасом тяговооруженности самолета.
Одной из основных характеристик, влияющих на исход ближнего воздушного боя, является радиус разворота летательного аппарата. При существующих ограничениях по удельной нагрузке на крыло минимальный радиус разворота лучших истребителей четвертого поколения равняется примерно 500 м.
Дальнейшее значительное уменьшение этого параметра (примерно в два-три раза) может быть достигнуто только при выходе самолета на закритические углы атаки, значительно превышающие углы атаки, соответствующие Cymax. Проведенные американскими специалистами крупномасштабные аналитические исследования с компьютерным моделированием показали, что такой «сверхманевренный» истребитель имел бы значительное превосходство над самолетами, маневрирующими в традиционной области полетных режимов. Для практической проверки этой концепции США совместно с Германией был построен экспериментальный самолет Рокуэлл/МВВ Х-31 с системой управления вектором тяги двигателя (УВТ).

Частично данная концепция была реализована и при создании истребителя пятого поколения Локхид-Мартин F-22 «Рэптор» (также оснащенного системой УВТ), у которого некоторое повышение маневренных характеристик на сверхзвуковой и дозвуковой скоростях сочетается со сверхзвуковой крейсерской скоростью и существенным снижением радиолокационной заметности. Следует отметить, что термин «сверхманевренность» был введен на Западе во второй половине 80-х гг. и имел весьма произвольное толкование, сводящееся в основном к способности самолета сохранять устойчивость и управляемость на закритических углах атаки.

В основе современной концепции истребителя пятого поколения, заявленной на многих авиационных выставках и показах, также лежат принципы кардинального улучшения маневренности в воздушном бою в сочетании с резким снижением радиолокационной и тепловой заметности.
Практическая реализация этой концепции стала возможной благодаря ряду принципиальных научно-технических достижений в областях аэродинамики, двигателестроения, радиоэлектроники и др. Новые аэродинамические схемы и компоновки летательных аппаратов, появление возможности непосредственного управления боковой и подъемной силами, вектором тяги двигателя, а также создание систем управления, которые уже не корректируют, а формируют летательный аппарат как объект управления, обеспечили истребителю пятого поколения значительно более высокий уровень подвижности — «сверхманевренность». Отечественные специалисты под этим термином понимают совокупность таких свойств летательного аппарата, как возможность раздельного управления угловым и траекторным движением (раздельное управление векторами перегрузки и собственной угловой скорости ЛА), а также возможность выполнения пространственных маневров с большими величинами угловых скоростей, углов атаки (более 90°) и скольжения, на малых (близких к нулевым) скоростях.
Большой объем исследований по изучению и моделированию аэродинамики и динамики полета на «сверхманевренности» был проведен специалистами ЦАГИ в 80-90-е гг. О значимости этой работы говорит тот факт, что большая группа ее участников была удостоена премии им. Н.Е.Жуковского.
Несмотря на то, что «сверхманевренность» рассматривалась как одна из основ концепции перспективных истребителей, в 90-х гг. — в значительной степени под влиянием экономических и политических факторов — появились высказывания о нецелесообразности дальнейшей борьбы за повышение маневренных характеристик перспективных боевых самолетов. При этом делаются ссылки на чрезмерные затраты, вызванные усложнением конструкции и не приводящие к заметному увеличению боевой эффективности авиационного комплекса. Утверждается, что совершенствование управляемых ракет сводит на нет значение повышения маневренности самолета.

Сверхманевренный истребитель, по мнению сторонников такого подхода, является весьма дорогостоящей, и в целом бесполезной «игрушкой». Следует заметить, что в определенной мере подобный подход возобладал в США, где пошли на определенное снижение возможностей истребителя F-22A в ближнем маневренном воздушном бою (по словам Томаса Бербэйджа, генерального менеджера программы, «если самолету F-22A придется вступить в ближний воздушный бой с перегрузкой девять, значит нами допущена какая-то ошибка»), а также заложили в требования к перспективному легкому истребителю JSF «маневренность на уровне существующих самолетов четвертого поколения».


Наличие столь широкого спектра мнений о пользе «сверхманевренности» обусловливается, по всей видимости, отсутствием системного подхода к анализу ее влияния на боевую эффективность истребителя.
Исходными при создании авиационной техники являются не средства, а цели, для достижения которых она разрабатывается. Исходя из целей, ради которых создается современный истребитель, можно сделать вывод о том, что собственно самолет можно рассматривать как боевую платформу для доставки оружия и обеспечения условий его высокоточного применения. Все остальные задачи являются хотя и важными, но не основными (т.е. несистемообразующими). Следовательно, в рамках системного подхода необходимо рассматривать единую целенаправленную систему «самолет — оружие -бортовой комплекс — экипаж», которую можно назвать «авиационный боевой комплекс» (АБК). Результаты системного анализа позволяют сделать вывод о том, что в последние годы сложился ряд противоречий между летно-техническими характеристиками самолета, возможностями бортового комплекса, оружия и экипажа. Это, в свою очередь, приводит к нерациональному использованию возможностей отдельных элементов АБК и, как следствие, к снижению его эффективности.

Одним из наиболее перспективных направлений преодоления возникших противоречий является реализация интерактивных методов прицеливания и управления самолетом и оружием, разработанных в рамках единой концепции и ориентированных на максимальное использование маневренных и «сверхманевренных» возможностей летальных аппаратов и их экипажей при действии как по воздушным, так и по наземным целям.
Бытует мнение, что «сверхманевренность» повышает эффективность истребителя лишь в ближнем воздушном бою, относительная вероятность которого, по ряду оценок, неуклонно снижается (вспомним высказывание Т.Бербэйджа). Оставляя в стороне справедливость этих прогнозов, можно утверждать, что «сверхманевренность» может обеспечить победу и при ведении боя на больших дальностях, вне визуального контакта противников.

Эффективность истребителя при ведении дальнего группового воздушного боя в значительной степени определяется способностью опережать противника в применении оружия, а также интенсивностью нанесения ракетного удара. Опережение достигается главным образом за счет увеличения дальности обнаружения и захвата воздушной цели, улучшения энерго-баллистических характеристик ракет, оптимизации методов их наведения, а также разгонно-скоростных характеристик летательного аппарата. Так, увеличение скорости истребителя в момент пуска в полтора раза с последующим интенсивным динамическим торможением (элемент сверхманевренности, обеспечивающий срыв наведения ракет противника) позволяет увеличить эффективность авиационного комплекса в 1,5-2,0 раза.

Эффективность поражающего действия УР класса «воздух-воздух» зависит от их точностных характеристик, условий подхода ракеты к цели, типа боевой части, характеристик взрывателя, степени уязвимости неприятельских самолетов. Исследования показали наличие рациональных (гарантированных) зон применения ракет, в которых обеспечивается максимальная реализация возможностей ракетного оружия. Эти зоны зависят от противодействия противника и ряда других факторов, определяющих эффективность авиационного комплекса в дальнем групповом воздушном бою.
Данный факт обусловил необходимость как совершенствования приемов и способов применения УР «воздух-воздух», обеспечивающих максимальную реализацию их возможностей, так и отработки противоракетных маневров истребителя за счет использования режимов «сверхманевренности».
Рост маневренных возможностей истребителей четвертого поколения обусловил изменение ряда характеристик ближнего воздушного боя — его пространственного размаха, диапазона высот и скоростей, продолжительности боевого контакта. В современном ближнем групповом воздушном бою уже не обязателен выход истребителя в заднюю полусферу цели. Сегодня стали возможными пуски ракет с тепловой головкой самонаведения на встречных курсах, причем по мере совершенствования оружия и прицельных систем доля таких атак возрастает. Если раньше — при столкновении самолетов второго или третьего поколений — н а и б о л ь ш а я часть пусков ракет в ближнем воздушном бою приходилась на диапазон курсовых углов цели 180-120°, то сейчас пуски распределяются по всей области пространства вокруг самолета противника, причем их количество в диапазоне курсовых углов 120-60° (48%) превышает количество пусков в диапазоне углов 180-120° (31%). Помимо расширения возможностей применения оружия по условиям курсового угла цели, современные ракеты с ТГС позволяют осуществлять пуск в широком диапазоне углов целеуказания (курсовых углов истребителя). В современном бою только четверть УР запускается при углах целеуказания менее 10°, а остальная часть пусков выполняется с углами целеуказания 10-30° и более.

Расширение возможностей оружия значительно увеличило долю ситуаций, при которых возникают условия для его применения. Сокращается среднее время от момента завязки боя до поражения одного из его участников. Участились ситуации, близкие к дуэльным, когда разница во времени применения противниками оружия составляет лишь несколько секунд. Все это повышает в современном ближнем маневренном воздушном бою роль факторов, способствующих упреждению противника в открытии огня. К таким факторам в первую очередь относятся: высокие характеристики неустановившегося маневрирования истребителя, угловая скорость целеуказания, время захвата цели ГСН, а также время схода ракеты с пусковой установки.

Опыт локальных войн последнего времени показывает, что рост скорости неустановившегося разворота обусловил снижение средней скорости воздушного боя. Это связано с необходимостью быстрого выхода самолета на режим с максимальной угловой скоростью. По сравнению с истребителями третьего поколения у машин четвертого поколения средняя скорость ближнего маневренного воздушного боя на 150-200 км/ч меньше. Несмотря на это, средний уровень перегрузок, с которыми маневрируют современные самолеты, не только не сократился, а даже несколько возрос. Снижение средней скорости и возрастание перегрузок привели к сокращению пространства, на котором протекает ближний воздушный бой: если самолеты третьего поколения имели средний радиус маневрирования порядка 2000 м, а сам бой двух пар истребителей протекал, как правило, на пространстве 10…15 х 10…15 км при средней разнице минимальных и максимальных высот 6…8 км, то истребители четвертого поколения маневрируют со средним радиусом 800…1000 м, а пространство маневрирования сократилось до «кусочка неба» 4…6 х 4…6 км при диапазоне высот 4 км.

Уменьшение размеров «поля боя» при росте маневренности истребителей привело к увеличению скоростей относительного углового перемещения соперников. Это явилось причиной повышения доли кратковременных ситуаций, в которых имеется возможность применения оружия по параметрам разрешенной дальности, курсовых углов цели и истребителя. Однако дефицит времени и высокая угловая скорость визирования затрудняют прицеливание и пуск ракет. Выход из создавшейся ситуации видится в кратковременном достижении высокой угловой скорости разворота (вновь
«сверхманевренность»!).

Возрастание разгонных характеристик истребителей, рост дальности пуска ракет класса «воздух-воздух» и вероятности атак с передней полусферы сократили время сближения самолетов в ближнем маневренном воздушном бою. Это «сжало» и промежуток времени от момента обнаружения цели до ее поражения, что, в свою очередь, уменьшило и среднюю продолжительность такого боя. Поэтому из всех частных характеристик маневренности в ближнем воздушном бою важнейшую роль приобретает угловая скорость и радиус разворота, влияющие на быстроту занятия положения для атаки и упреждение противника в применении оружия.

Таким образом, одним из важнейших направлений повышения эффективности боевого применения современных авиационных боевых комплексов стала борьба за наиболее полное использование маневренных характеристик самолета.

Применение режимов сверхманевренности в ближнем воздушном бою позволяет существенно повысить эффективность УР малой дальности в пределах ближней границы области возможных пусков. Оценка условий применения оружия при выполнении тактических приемов с торможением на закритических углах атаки показывает, что ориентация ГСН ракеты в направлении цели, позволяющая произвести целеуказание и захват, может осуществляться на участке больших углов атаки. Однако малое располагаемое время и высокие угловые скорости изменения угла тангажа практически исключают такую возможность при существующих ограничениях прицельной системы и ракет.

Следует заметить, что одним из недостатков тактических приемов с торможением на закритических углах атаки является потеря энергии, ограничивающая на некоторое время возможности интенсивного маневрирования. В целях уменьшения времени разгона после торможения при достаточном запасе высоты могут быть использованы маневры «Переворот, Кобра» и «Полупереворот, Кобра». При этом атакуемый истребитель выполняет часть переворота (полупереворота) в сторону атакующего, а затем на нисходящей траектории производит резкое торможение на закритических углах атаки, приводящее к энергичному проскакиванию противника вперед. Обороняющийся в этом случае оказывается в выгодном положении для применения оружия и, кроме того, имеет возможность на снижении быстро увеличить скорость для дальнейших маневров.

Отдельные элементы «сверхманевренности» уже были успешно применены при ведении учебных воздушных боев, в том числе и с самолетами ВВС зарубежных стран. В качестве примера можно привести воздушный бой, проведенный 16 сентября 1995 г. в ходе совместных российско-южноафриканских учений на территории ЮАР. Вот как описывает его один из его участников, начальник Центра боевого применения и переучивания летного состава фронтовой авиации генерал-майор А.Н.Харчевский: «В первом воздушном бою, который я провел на истребителе МиГ-29 с самолетом «Чита» D (усовершенствованный вариант истребителя IAI «Кфир» С.7, созданный в ЮАР в конце 80-х гг.), пилотировавшимся симпатичным парнем по фамилии Казино, я убедился, что южноафриканский летчик владеет своим истребителем в совершенстве. Он не боялся потерять скорость, великолепно ориентировался…. На чем я его сразу «купил» — это на «Колоколе» — фигуре, позволяющей быстро получить тактическое преимущество. При этом «Чита» проскочила вперед, я свалился на нее сверху, а мой противник не сразу понял, что произошло. Риск с моей стороны все же был: ведь потеря скорости в воздушном бою, как правило, равносильна потере преимущества. Но если грамотно применять «Колокол», буквально за 20 секунд можно завоевать полное преимущество в бою». Как говорится, комментарии излишни…..


Маневренные характеристики самолетов существенно влияют и на эффективность поражения наземных целей. Вследствие навигационных ошибок, случайности процессов обнаружения, опознавания и захвата, положение самолета относительно наземной цели в момент ее обнаружения также случайно. Однако существует определенная область воздушного пространства, в котором возможна атака с ходу, обеспечивающая наибольшую эффективность нанесения удара. Размеры зоны возможных атак (ЗВА) зависят от особенностей бортового оружия, поля зрения обзорно-прицельных систем, возможностей экипажа по просмотру местности, а также маневренных характеристик самолета. Увеличение маневренности позволяет расширить ЗВА (а, следовательно, и вероятность атаки с ходу) за счет уменьшения радиуса разворота. Использование элементов «сверхманевренности» — динамического торможения и маневрирования на скорости 200-400 км/ч — позволяет значительно увеличить дальность обнаружения цели и существенно уменьшить минимальную дальность применения оружия.
Однако «сверхманевренность» требует разработки и освоения новых тактических приемов и способов поиска и атаки наземных объектов, особенно при применении неуправляемых средств поражения. Выход на наземную цель, подготовка к ее атаке и сама атака производятся, как правило, в условиях одновременного преодоления объектовой ПВО противника. Это, с одной стороны, вызывает необходимость интенсивного противовоздушного маневрирования, а с другой — накладывает ограничения на тактику самого удара. Как в самолетных, так и в наземных РЛС систем ПВО в настоящее время применяется импульсно-доплеровский режим работы. Это обусловливает существование так называемых зон «слепых» скоростей сближения, на которых радиолокационные станции теряют цель. При интенсивном изменении противником скорости и направления движения («скачки» по скорости и координате) в системе автосопровождения ЗРК неизбежны длительные переходные процессы, характеризующиеся резким возрастанием ошибок и потерей устойчивости работы. Таким образом, интенсивный маневр, который может быть дополнен постановкой радиоэлектронных помех, существенно снижает эффективность наземных средств ПВО противника.

Основными направлениями реализации элементов «сверхманевренности» при решении ударных задач являются: применение управляемых средств поражения большой и средней дальности (ракет и планирующих авиабомб) со сложных видов маневра с минимальным входом в зону поражения ЗРК противника; снижение вероятности автосопровождения цели РЛС ЗРК за счет интенсивного маневрирования, приводящего к эффекту «скачка по скорости»; снижение вероятности попадания зенитной ракеты в самолет при появлении эффекта «скачка по координате», появлении флуктуационных ошибок и «раскачки» системы управления ЗУР, а также использовании углов закрытия местности и «мертвых зон» ЗРК при атаке цели неуправляемыми средствами поражения.

Однако для того, чтобы «сверхманевренность» «заработала» как реальное средство повышения эффективности авиационных боевых комплексов, должна быть проделана большая и многоплановая работа. В частности, требуется отработка вопросов безопасности отделения авиационных средств поражения от самолета при больших углах атаки и скольжения. Особенности боевого применения «сверхманевренных» истребителей обусловливают необходимость решения ряда психофизиологических проблем, связанных с функционированием летчика. Наконец, нуждаются в углубленной проработке вопросы тактики и управления групповым воздушным боем перспективных «сверхманевренных» истребителей.

Маневренностью самолета называется его способность изменять вектор скорости полета по величине и направлению.

Маневренные свойства реализуются летчиком при боевом маневрировании, которое состоит из отдельных законченных или незаконченных фигур пилотажа, непрерывно следующих друг за другом.

Маневренность является одним из важнейших качеств боевого самолета любого рода авиации. Она позволяет успешно вести воздушный бой, преодолевать ПВО противника, атаковать наземные цели, строить, перестраивать и распускать боевой порядок (строй) самолетов, выводить на объект в заданное время и т. д.

Особое и, можно сказать, решающее значение имеет маневренность для фронтового истребителя, ведущего воздушный бой с истербителем (истребителем-бомбардировщиком) противника. Действительно, заняв выгодное тактическое положение по отношению к противнику, можно его сбить одной-двумя ракетами или огнем даже из единственной пушки. Наоборот, если выгодное положение займет противник (например, «повиснет на хвосте»), то в такой ситуации не поможет любое количество ракет и пушек. Высокая маневренность позволяет также производить успешный выход из воздушного боя и отрыв от противника.

ПОКАЗАТЕЛИ МАНЕВРЕННОСТИ

В самом общем случае маневренность самолета можно полностью охарактеризовать секундным векторным приращением скорости. Пусть в начальный момент времени величина и направление скорости самолета изображается вектором V1 (рис. 1), а через одну секунду - вектором V2; тогда V2=V1+ΔV, где ΔV - секундное векторное приращение скорости.

Рис. 1. Секундное векторное приращение скорости

На рис. 2 изображена область возможных секундных векторных приращений скорости для некоторого самолета при его маневре в горизонтальной плоскости. Физический смысл графика состоит в том, что через одну секунду конца векторов ΔV и V2 могут оказаться только внутри области, ограниченной линией а-б-в-г-д-е. При располагаемой тяге двигателей Рр конец вектора ΔV может оказаться только на границе а-б-в-г, на которой можно отметить следующие возможные варианты маневрирования:

  • а - разгон по прямой,
  • б - разворот с разгоном,
  • в - установившийся разворот,
  • г - форсированный разворот с торможением.

При нулевой тяге и выпущенных тормозных щитках конец вектора ΔV может оказаться через секунду только на границе д-е, например, в точках:

  • д - энергичный разворот с торможением,
  • е - торможение по прямой.

При промежуточной тяге конец вектора ΔV может оказаться в любой точке между границами а-б-в-г и д-е. Отрезок г-д соответствует разворотам при Сyдоп с различной тягой.

Непонимание того факта, что маневренность определяется секундным векторным приращением скорости, т. е. величиной ΔV, иногда приводит к неправильной оценке того или иного самолета. Например, перед войной 1941-1945 гг. некоторые летчики считали, что наш старый истребитель И-16 обладал более высокими маневренными свойствами, чем новые самолеты Як-1, МиГ-3 и ЛаГГ-3. Однако в маневренных воздушных боях Як-1 проявил себя лучше, чем И-16. В чем дело? Оказывается, И-16 мог быстро «поворачиваться», но его секундные приращения ΔV были гораздо меньше, чем у Як-1 (рис. 3); т. е. фактически Як-1 обладал более высокими маневренными свойствами, если вопрос не рассматривать узко, с точки зрения только одной «поворотливости». Аналогично можно показать, что, например, самолет МиГ-21 маневреннее самолета МиГ-17.

Области возможных приращений ΔV (рис. 2 и 3) хорошо иллюстрируют физический смысл понятия маневренности, т. е. дают качественную картину явления, но не позволяют производить количественный анализ, для которого привлекаются различного рода частные и обобщенные показатели маневренности.

Секундное векторное приращение скорости ΔV связано с перегрузками следующей зависимостью:

За счет земного ускорения g все самолеты получают одинаковое приращение скорости ΔV (9,8 м/с², вертикально вниз). Боковая перегрузка nz при маневрировании обычно не используется, поэтому маневренность самолета полностью характеризуется двумя перегрузками - nx и ny (перегрузка - векторная величина, но в дальнейшем знак вектора «->» будет опускаться).

Перегрузки nх и nу являются, таким образом, общими показателями маневренности .

С этими перегрузками связаны все частные показатели:

  • rг - радиус разворота (виража) в горизонтальной плоскости;
  • wг - угловая скорость разворота в горизонтальной плоскости;
  • rв - радиус маневра в вертикальной плоскости;
  • время разворота на заданный угол;
  • wв - угловая скорость поворота траектории в вертикальной плоскости;
  • jx - ускорение в горизонтальном полете;
  • Vy - вертикальная скорость при установившемся подъеме;
  • Vyэ - скорость набора энергетической высоты и пр.

ПЕРЕГРУЗКИ

Нормальной перегрузкой ny называется отношение алгебраической суммы подъемной силы и вертикальной составляющей силы тяги (в поточной системе координат) к весу самолета:

Примечание 1. При движении по земле в создании нормальной перегрузки участвует и сила реакции земли.

Примечание 2. Самописцы САРПП регистрируют перегрузки в связанной системе координат, в которой

На самолетах обычной схемы величина Ру сравнительно мала и ею пренебрегают. Тогда нормальной перегрузкой будет отношение подъемной силы к весу самолета:

Располагаемой нормальной перегрузкой nyр называется наибольшая перегрузка, которую можно использовать в полете с соблюдением условий безопасности.

Если в последнюю формулу подставить располагаемый коэффициент подъемной силы Cyр, то полученная перегрузка и будет располагаемой.

nyр=Cyр*S*q/G (2)

В полете величина Cyр, как уже условились, может ограничиваться по сваливанию, тряске, подхвату (и тогда Cyр=Cyдоп) или по управляемости (и тогда Cyр=Cyf). Кроме того, величина nyр может ограничиваться по условиям прочности самолета, т. е. в любом случае nyр не может быть больше максимальной эксплуатационной перегрузки nyэ макс.

К названию перегрузки nyр иногда добавляют слово «кратковременная».

Используя формулу (2) и функцию Cyр(M) можно получить зависимость располагаемой перегрузки nyр от числа М и высоты полета, которая изображена графически на рис. 4 (пример). Заметим, что содержание рисунков 4,а и 4,6 совершенно одинаковое. Верхний график обычно используется для различных расчетов. Однако для летного состава удобнее график в координатах М-Н (нижний), на котором линии постоянных располагаемых перегрузок проведены прямо внутри диапазона высот и скоростей полета самолета. Проанализируем рис. 4,6.

Линия nyр=1, очевидно, является уже известной нам границей горизонтального полета. Линия nyр=7 является границей, правее и ниже которой может произойти превышение максимальной эксплуатационной перегрузки (в нашем примере nyэ макс=7).

Линии постоянных располагаемых перегрузок проходят таким образом, что nyp2/nyp1=p2/p1 т. е. между двумя любыми линиями разница в высоте такова, что отношение давлений равно отношению перегрузок.

Исходя из этого, располагаемую перегрузку можно найти, имея на диапазоне высот и скоростей только одну границу горизонтального полета.

Пусть, например, требуется определить nyр при М=1 и H=14 км (в точке А на рис. 4,6). Решение: находим высоту точки В (20 км) и давление на этой высоте (5760 Н/м2), а также давление на заданной высоте 14 км (14 750 Н/м2); искомая перегрузка в точке А будет nyр=14 750/5760 = 2,56.

Если известно, что график на рис. 4 построен для веса самолета G1 а нам требуется располагаемая перегрузка для веса G2, то пересчет производится по очевидной пропорции:

Вывод. Имея границу горизонтального полета (линию nyp1=1), построенную для веса G1, можно определить располагаемую перегрузку на любой высоте и скорости полета для любого веса G2, используя пропорцию

nyp2/nyp1=(p2/p1)*(G1/G2) (3)

Но в любом случае используемая в полете перегрузка не должна быть больше максимальной эксплуатационной. Строго говоря, для самолета, подверженного в полете большим деформациям, формула (3) не всегда справедлива. Однако к самолетам-истребителям это замечание обычно не относится. По величине nyp при самых энергичных неустановившихся маневрах можно определить такие частные характеристики маневренности самолета, как текущие радиусы rг и rв, текущие угловые скорости wг и wв.

Предельной по тяге нормальной перегрузкой nyпр называется такая наибольшая перегрузка, при которой лобовое сопротивление Q становится равным тяге Рр и при этом nx=0. К названию этой перегрузки иногда добавляют слово «длительная».

Вычисляется предельная по тяге перегрузка следующим образом:

  • для заданной высоты и числа М находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при nyпр имеем Pр=Q=Cx*S*q, откуда можно найти Сх;
  • из сетки поляр по известным М и Сx находим Су;
  • вычисляем подъемную силу Y=Су*S*q;
  • вычисляем перегрузку ny=Y/G, которая и будет предельной по тяге, так как при расчетах мы исходили из равенства Рр=Q.

Второй метод расчета применяется, когда поляры самолета есть квадратичные параболы и когда вместо этих поляр в описании самолета даются кривые Сх0(М) и А(М):

  • находим тягу Рр;
  • запишем Рр = Cр*S*q, где Ср коэффициент тяги;
  • по условию имеем Рр = Ср*S*q=Q=Cх*Q*S*q+(A*G²n²yпр)/(S*q), откуда:

Индуктивное сопротивление пропорционально квадрату перегрузки, т. е. Qи=Qи¹*ny² (где Qи¹ - индуктивное сопротивление при nу=1). Поэтому, исходя из равенства Рр=Qo+Qи, можно записать выражение для предельной перегрузки и в таком виде:

Зависимость предельной перегрузки от числа М и высоты полета изображена графически на рис. 5.5 (пример взят из книги ).

Можно заметить, что линий nyпр=1 на рис. 5. является уже известной нам границей установившегося горизонтального полета.

В стратосфере температура воздуха постоянна и тяга пропорциональна атмосферному давлению, т. е. Рp2/Рp1=р2/p1 (здесь коэффициент тяги Ср=const), поэтому в соответствии с формулой (5.4) при заданном числе М в стратосфере имеет место пропорция:

Следовательно, предельную по тяге перегрузку на любой высоте более 11 км можно определить по давлению р1 на линии статических потолков, где nyпр1=1. Ниже 11 км пропорция (5.6) не соблюдается, так как тяга при уменьшении высоты полета растет медленнее, чем давление (вследствие увеличения температуры воздуха), и величина коэффициента тяги Ср падает. Поэтому для высот 0-11 км расчет предельных по тяге перегрузок приходится производить обычным порядком, т. е. с использованием высотно-скоростных характеристик двигателя.

По величине nyпр можно найти такие частные характеристики маневренности самолета, как радиус rг, угловую скорость wг, время tf установившегося виража, а также г, w и t любого маневра, выполняемого при постоянной энергии (прл Pр=Q).

Продольной перегрузкой nх называется отношение разности между силой тяги (считая Рх=Р) и лобовым сопротивлением к весу самолета

Примечание При движении по земле к сопротивлению следует добавить еще и силу трения колес.

Если в последнюю формулу подставить располагаемую тягу двигателей Рр, то получим так называемую располагаемую продольную перегрузку :

Рис. 5.5. Предельные по тяге перегрузки самолета F-4C «Фантом»; форсаж, масса 17,6 m

Расчет располагаемой продольной перегрузки при произвольном значении nу производим следующим образом:

  • находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при заданной нормальной перегрузке ny вычисляем лобовое сопротивление следующим путем:
    ny->Y->Сy->Сx->Q;
  • по формуле (5.7) вычисляем nxр.

Если поляра - квадратичная парабола, то можно воспользоваться выражением Q=Q0+Qи¹*ny², в результате чего формула (5.7) примет вид

Вспомним, что при ny=nyпр ямеет место равенство

Подставив это выражение в предыдущее и разервув получим окончательную формулу

Если нас интересует величина располагаемой продольной перегрузки для горизонтального полета, т. е. для ny=1, то формула (5.8) приобретает вид

На рис. 5.6 в качестве примера приведена зависимость nxр¹ от М и Н для самолета F-4C «Фантом». Можно заметить, что кривые nxр¹(M, Н) в другом масштабе примерно повторяют ход кривых nyпр(М, Н), а линия nxр¹=0 точно совпадает с линией nyпр=1. Это и понятно, так как обе эти перегрузки связаны с тяговооруженностью самолета.

По величине nxр¹ можно определить такие частные характеристики маневренности самолета, как ускорение при горизонтальном разгоне jx, вертикальную скорость установившегося подъема Vy, скорость набора энергетической высоты Vyэ в неустановившемся прямолинейном подъеме (снижении) с изменением скорости.

Рис 5 6 Располагаемые продольные перегрузки в горизонтальном полете самолета F-4C «Фантом»; форсаж, масса 17,6 т

8. Все рассмотренные характерные перегрузки (пУ9, пупр, Я*Р> ^лгр1) часто изображаются в виде графика, приведенного на рис. 5.7. Он называется графиком обобщенных характеристик маневренности самолета. По рис. 5.7 для заданной высоты Hi при любом числе М можно найти пур (на линии Сур или п^макс). %Пр (на горизонтальной оси, т. е. при пхр = 0), Лхр1 (при пу=) и пХ9 (при любой перегрузке пу). Обобщенные характеристики наиболее удобны для различного рода расчетов, так как с них можно непосредственно снять любую величину, но они не наглядны ввиду многочисленности этих графиков и кривых на них (для каждой высоты нужно иметь отдельный график, подобный изображенному на рис. 5.7). Рис 5 7 Обобщенные характеристики маневренности самолета на высоте Hi (пример) Чтобы составить полное и наглядное представление о маневренности самолета, достаточно иметь три графиками р (М, Н) -как на рис. 5.4,6; пупр (М, Н) -как на рис. 5.5,6; пх р1 (М, Н) - как на рис. 5 6,6.

В заключение рассмотрим вопрос о влиянии эксплуатационных факторов на располагаемую и предельную по тяге нормальные перегрузки и на располагаемую продольную перегрузку

Влияние веса

Как это видно из формул (5.2) и (5.4), располагаемая нормальная перегрузка пур и предельная по тяге нормальная перегрузка nyпр изменяются обратно пропорционально весу самолета (при постоянных М и Н).

Если задана перегрузка ny, то при увеличении веса самолета продольная располагаемая перегрузка nxр уменьшается в соответствии с формулой (5.7), но простой обратной пропорциональности здесь не наблюдается, так как при увеличении G возрастает и лобовое сопротивление Q.

Влияние внешних подвесок

На перечисленные перегрузки внешние подвески могут влиять, во-первых, через свой вес и, во-вторых, через дополнительное увеличение безындуктивной части лобового сопротивления самолета.

На располагаемую нормальную перегрузку nyр сопротивление подвесок не влияет, так как эта перегрузка зависит только от величины располагаемой подъемной силы крыла.

Предельная по тяге перегрузка nyпр, как это видно из формулы (5.4), уменьшается, если увеличивается Схо. Чем больше тяга и больше разность Ср - Схо, тем меньше влияние сопротивления подвесок на предельную перегрузку.

Располагаемая продольная перегрузка лхр при возрастании Схо также уменьшается. Влияние Схо на nxр становится относительно больше при увеличении на маневре перегрузки nу.

Влияние атмосферных условий.

Для определенности рассуждений будем рассматривать увеличение температуры на 1 % при стандартном давлении р; плотность воздуха р при этом будет на 1 % меньше стандартной. Откуда:

  • при заданной воздушной скорости V располагаемая (по Сyр) нормальная перегрузка пур упадет примерно на 1%. Но при заданных индикаторной скорости Vи или числе М перегрузка nур при увеличении температуры не изменится;
  • предельная по тяге нормальная перегрузка nyпр при заданном числе М упадет, так как увеличение температуры на 1 % приводит к падению тяги Рр и коэффициента тяги Ср примерно на 2%;
  • располагаемая продольная перегрузка nхр при увеличении температуры воздуха также уменьшится в соответствии с падением тяги.

Включение форсажа (или его выключение)

Очень сильно влияет на предельную по тяге нормальную перегрузку nyпр, и располагаемую продольную перегрузку nхр. Даже на скоростях и высотах, где Рр >> Qг, увеличение тяги, например, в 2 раза приводит к увеличению nупр примерно в sqrt(2) раз и к увеличению nхр¹ (при nу = 1) примерно в 2 раза.

На скоростях и высотах, где разность Рр - Qг мала (например, вблизи статического потолка), изменение тяги приводит к еще более ощутимому изменению и nупр и nхр¹.

Что касается располагаемой (по Сyр) нормальной перегрузки nyр, то величина тяги на нее почти не влияет (считая Рy=0). Но следует учитывать, что при большей тяге самолет на маневре теряет энергию медленее и, следовательно, более длительное время может находиться на повышенных скоростях, на которых располагаемая перегрузка nyр имеет наибольшую величину.