Отопление с помощью теплового. Принцип работы теплового насоса. «Земляные» тепловые насосы

Отопление с помощью теплового. Принцип работы теплового насоса. «Земляные» тепловые насосы

Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.


2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома - вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен - электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент - не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации - использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.

Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) - тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети).

Классификация тепловых насосов следующая: «вода - вода», «вода - воздух», «воздух - воздух», «воздух - вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы - с помощью такого теплового насоса можно заодно получить горячую воду в доме.

Но самым интересной выглядит категория тепловых насосов класса «воздух - воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.

3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим - 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это - «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению - для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома - в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) - установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше - в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает - переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ - температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.

Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.

Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.

Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.

При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.
При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.
При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.
При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.

Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.

15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре - 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.

16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?
Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.
В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.
Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.
В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается.
Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.

17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.

18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент - кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.

20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.

Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.

21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.

22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент - как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.

А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).

24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов - японцы).

Электрическое отопление:
Электрический котел - 50 тыс рублей
Трубы, радиаторы, фитинги и т.д. - еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.

Тепловой насос:
Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) - 120 тыс. рублей.
Воздуховоды, адаптеры, теплоизоляция и т.д. - еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.

Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей.

Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).

Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.

А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).

Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!

Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то.

Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.

25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них - обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте - производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.

Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени -

Тепловой насос представляет собой устройство, позволяющее переносить тепловую энергию от менее нагретого тела к более нагретому телу, увеличивая его температуру. В последние годы тепловые насосы пользуются повышенным спросом как источник альтернативной тепловой энергии, позволяющий получать действительно дешевое тепло, не загрязняя при этом окружающей среды.

Сегодня их выпускают многие производители теплотехнического оборудования, а общая тенденция такова, что в ближайшие годы именно тепловые насосы займут лидирующие позиции в ряду отопительного оборудования.

Как правило, тепловые насосы используют тепло подземных вод , температура которых круглый год находится приблизительно на одном уровне и составляет +10С, тепло окружающей среды или водоемов.

Принцип их работы основывается на том, что любое тело, имеющее температуру выше значения абсолютного нуля, обладает запасом тепловой энергии, прямо пропорциональным его массе и удельной теплоемкости. Понятно, что моря, океаны, а также подземные воды, масса которых велика, обладают грандиозным запасом тепловой энергии, частичное использование которой на отоплении жилища никак не сказывается на их температуре и на экологической обстановке на планете.

«Забрать» тепловую энергию от какого-либо тела можно только охладив его. Количество выделенного при этом тепла (в примитивном виде) можно рассчитать по формуле

Q=CM(T2-T1) , где

Q - полученное тепло

C -теплоемкость

M - масса

T1 T2 - разность температур, на которую было произведено охлаждение тела

Из формулы видно, что при охлаждении одного килограмма теплоносителя от 1000 градусов до 0 градусов может быть получено такое же количество тепла, что и при охлаждении 1000кг теплоносителя от 1С до 0С.

Главное, суметь использовать тепловую энергию и направить ее на отопление жилых домов и производственных помещений.

Идея использования тепловой энергии менее нагретых тел возникла еще в середине 19 столетия, а ее авторство принадлежит знаменитому ученому того времени лорду Кельвину. Однако далее общей идеи дело у него не продвинулось. Первый проект теплового насоса был предложен в 1855 году и принадлежал он Петеру Риттеру фор Риттенгеру. Но и он не получил поддержки и не нашел практического применения.

«Второе рождение» теплового насоса относится к середине сороковых годов прошлого столетия, когда широкое распространение получили обычные бытовые холодильники. Именно они натолкнули швейцарца Роберта Вебера на идею использовать тепло, выделяемое морозильной камерой, для нагрева воды для хозяйственных нужд.

Полученный эффект оказался ошеломляющим: количество тепла оказалось столь велико, что его хватило не только для горячего водоснабжения, но и подогрева воды для отопления. Правда, при этом пришлось порядком потрудиться и придумать систему теплообменников, позволяющую утилизировать выделяемую холодильником тепловую энергию.

Однако вначале изобретение Роберта Вебера рассматривалось как забавная идея, и воспринималась подобно идеям из современной знаменитой рубрики «Очумелые ручки». Настоящий интерес к нему возник намного позже, когда действительно остро встал вопрос поиска альтернативных источников энергии. Вот тогда идея теплового насоса получила свое современное очертание и практическое применение.

Современные тепловые насосы можно классифицировать в зависимости от источника низкотемпературного тепла, которым может быть грунт, вода (в открытом или в подземном водоеме), а также наружный воздух.

Полученная тепловая энергия может передаваться воде и использоваться для устройства водяного отопления, и горячего водоснабжения, а также воздуху, и применяться для отопления и кондиционирования. Учитывая это, тепловые насосы делят на 6 видов:

  • От грунта к воде (грунт-вода)
  • От грунта к воздуху (грунт-воздух)
  • От воды к воде (вода-вода)
  • От воды к воздуху (вода-воздух)
  • От воздуха к воде (воздух-вода)
  • От воздуха к воздуху (воздух-воздух)

Каждый вид тепловых насосов имеет свои характерные особенности установки и эксплуатации.

Способ установки и особенности эксплуатации теплового насоса ГРУНТ-ВОДА

  • Грунт универсальный поставщик низкотемпературной тепловой энергии

Грунт обладает колоссальным запасом низкотемпературной тепловой энергии. Именно земная кора постоянно аккумулирует солнечное тепло и при этом подогревается изнутри, от ядра планеты. В результате на глубине нескольких метров грунт всегда имеет положительную температуру. Как правило, в центральной части России речь идет о 150-170 см. Именно на этой глубине температура грунта имеет положительное значение и не опускается ниже 7-8 С.

Еще одна особенность грунта состоит в том, что даже при сильных морозах он промерзает постепенно. В результате минимальная температура грунта на глубине 150 см наблюдается тогда, когда на поверхности уже наступает календарная весна и потребность в тепле для отопления снижается.

Это значит, что для того, чтобы «отобрать» тепло у грунта в центральном районе России, теплообменники для аккумуляции тепловой энергии необходимо расположить на глубине ниже 150 см.

В этом случае теплоноситель, циркулирующий в системе теплового насоса, проходя по теплообменникам, будет нагреваться за счет тепла грунта, затем, поступая в испаритель, передавать тепло воде, циркулирующей в системе отопления, и возвращаться за новой порцией тепловой энергии.

  • Что может использоваться в качестве теплоносителя

В качестве теплоносителя в тепловых насосах типа грунт-вода чаще всего используют так называемый «рассол». Его готовят из воды и этиленгликоля или пропиленгликоля. В некоторых системах используют фреон, что в значительной степени усложняет конструкцию теплового насоса и приводит к повышению его стоимости. Дело в том, что теплообменник насоса этого вида должен иметь большую площадь теплообмена, следовательно, и внутренний объем, что требует соответствующего количества теплоносителя.

Использование фреона хоть и повышает эффективность работы теплового насоса, но при этом требует абсолютной герметичности системы и ее устойчивости к повышенному давлению.

Для систем с «рассолом» теплообменники обычно делают из полимерных труб, чаще всего полиэтиленовых, диаметром от40-60мм. Теплообменники имеют вид горизонтальных или вертикальных коллекторов.

Представляет собой трубу, уложенную в грунт на глубине ниже 170 см. Для этого можно использовать любой незастроенный участок земли. Для удобства и увеличения площади теплообмена трубу укладывают зигзагом, петлями, спиралью и т.д. В дальнейшем этот участок земли можно использовать под газон, клумбу или огород. Следует отметить, что теплообмен между грунтом и коллектором идет лучше во влажной среде. Поэтому поверхность грунта можно смело поливать и удобрять.

Считается, что в среднем 1м2 грунта дает от 10 до 40 Вт тепловой энергии. В зависимости от потребности в тепловой энергии, петель коллектора может быть любое количество.

Вертикальный коллектор представляет собой систему труб, установленных в земле вертикально. Для этого бурятся скважины на глубину от нескольких метром до десятков, а то и сотен метров. Чаще всего вертикальный коллектор находится в тесном контакте с подземными водами, но это не является необходимым условием для его эксплуатации. То есть, вертикально установленный подземный коллектор может быть «сухим».

Вертикальный коллектор, так же, как и горизонтальный, может иметь практически любую конструкцию. Наибольшее распространение получили системы типа «труба в трубе» и «петли», по которым рассол подается насосом вниз и им же поднимается обратно к испарителю.

Следует отметить, что вертикальные коллекторы наиболее производительны. Объясняется это их расположением на большой глубине, где температура практически всегда находится на одном уровне и составляет 1-12 С. При их использовании с 1м2 можно получить от 30 до 100 Вт мощности. При необходимости количество скважин можно увеличивать.

Для улучшения процесс теплообмена между трубой и грунтом пространство между ними заливают бетоном.

  • Достоинства и недостатки тепловых насосов типа «грунт-вода»

Монтаж теплового насоса типа «грунт-вода» требует значительных финансовых вложений, но его эксплуатация позволяет получать практически бесплатную тепловую энергию. При этом не причиняется никакого ущерба окружающей среде.

Среди достоинств теплового насоса этого типа следует отметить:

  • Долговечность: может работать несколько десятилетий подряд без ремонта и технического обслуживания
  • Простоту эксплуатации
  • Возможность использования участка земли для земледелия
  • Быструю окупаемость: при отоплении помещений значительной площади, например от 300 м2 и выше, насос окупается за 3-5 лет.

Учитывая то, что установка теплообменника в грунт представляет собой сложные агротехнические работы, выполнять их следует обязательно с предварительной разработкой проекта.

Как работает тепловой насос

Тепловой насос состоит из следующих элементов:

  • Компрессора, работающего от обычной электрической сети
  • Испарителя
  • Конденсатора
  • Капилляра
  • Терморегулятора
  • Рабочего тела или хладагента, на роль которого в наибольшей степени подходит фреон

Принцип действия теплового насоса можно описать с помощью хорошо известного из школьного курса физики «Цикла Карно».

Поступающий в испаритель по капилляру газ (фреон) расширяется, его давление уменьшается, что приводит к его последующему испарению, при котором он, соприкасаясь со стенками испарителя, активно забирает у них тепло. Температура стенок снижается, что создает разницу температур между ними и массой, в которой находится тепловой насос. Как правило, это подземные воды, морская вода, озеро или масса земли. Не трудно догадаться, что при этом начинается процесс передачи тепловой энергии от более нагретого тела к менее нагретому телу, которым в данном случае, являются стенки испарителя. На данном этапе работы тепловой насос «выкачивает» тепло из среды теплоносителя.

На следующем этапе хладагент всасывается компрессором, затем сжимается и под давлением подается в конденсатор. В процессе сжатия его температура возрастает и может составлять от 80 до 120 С, что более чем достаточно для отопления и горячего водоснабжения жилого дома. В конденсаторе хладагент отдает свой запас тепловой энергии, остывает, переходит в жидкое состояние, а затем и поступает в капилляр. Затем процесс повторяется.

Для управления работой теплового насоса используется терморегулятор, с помощью которого прекращается подача электроэнергии в систему при достижении в помещении заданной температуры и возобновление работы насоса при снижении температуры ниже заранее определенного значения.

Тепловой насос можно использовать в качестве источника тепловой энергии и устраивать с ним системы отопления, аналогичные системам отопления на основе котла или печи. Пример такой системы приведен на схеме выше.

Следует отметить, что работа теплового насоса возможна только при подключении его к источнику электрической энергии. При этом может ошибочно возникнуть мнение, что вся система отопления основа на использовании именно электрической энергии. В действительности, для передачи в систему отопления 1кВт тепловой энергии необходимо затратить приблизительно 0,2-0,3 кВт электрической энергии.

Преимущества теплового насоса

Среди преимуществ теплового насоса следует выделить:

  • Высокую эффективность
  • Возможность переключения с режима отопления на режим кондиционирования и его последующее использование летом для охлаждения помещений
  • Возможность использования эффективной системы автоматического контроля
  • Экологическую безопасность
  • Компактность(размер не более бытового холодильника)
  • Бесшумность работы
  • Пожарную безопасность, что особенно важно для обогрева загородных домов

Среди недостатков теплового насоса следует отметить его высокую стоимость и сложность монтажа .

  • Принцип работы тепловых насосов
  • Отопительный контур
  • Достоинства и недостатки тепловых насосов
  • Секреты самоделкиных

Как это работает

Тепловой или геотермальный насос собирает тепловую энергию из окружающей среды, преобразовывает ее, с использованием хладагента, и подает в домашнюю систему отопления.

Основные узлы агрегата: компрессор, теплообменник, циркуляционный насос, автоматика, подающий контур. Насос способен забирать тепло из трех источников.

  • Воздух.
  • Вода.
  • Грунт.

Судя по веткам обсуждений, востребованы у нас два варианта – вода и грунт. Это обусловлено ограничениями по температуре – источник должен быть плюсовым. Расположение запитывающего контура бывает горизонтальным или вертикальным. В первом случае магистраль укладывают ниже уровня промерзания – от 1,5 метров глубины. Или на дно водоема, там даже по сильным морозам – до + 4⁰С. Длина контура зависит от габаритов отапливаемого помещения и мощности насоса. Во втором бурят скважины под зонды, средняя глубина – 50–70 метров. Пиастров А В , один из форумчан и владелец теплового насоса, так охарактеризовал вертикальную систему.

Пиастров А В Участник FORUMHOUSE

Тепло собирают геотермические зонды – закольцованный трубопровод, по которому циркулирует этиленгликоль. Они опускаются в скважины 50–70 метров глубины. Это наружный контур, а количество скважин зависит от мощности теплового насоса. Для домика в 100 метров квадратурой потребуется два зонда – две скважины.

Отопительный контур

Тепловой насос, в отличие от котлов на газу, угле или электричестве, нагревает носитель в среднем до 40⁰C. Это оптимальная температура, при которой и износ оборудования минимальный, и потребление электричества. Для обычных радиаторов таких показателей недостаточно. Поэтому с тепловым насосом обычно используют не трубы и батареи, а теплый пол. Он при таком нагреве теплоносителя эффективнее. Только шаг между трубами должен быть меньше. Стоит учесть, что теплый пол создает ограничения по выбору мебели и сушит воздух. Потребуется дополнительное увлажнение. Летом полы могут работать на охлаждение.

Достоинства и недостатки

Главное достоинство теплового насоса – высокая отдача, на каждый киловатт потребленного электричества он дает около 5 кВт тепла. Плюс никаких физических усилий в процессе работы, никаких отходов и угарных газов.

Кроме того, нет зависимости от газовщиков и хождений по инстанциям для согласования. Да и требования к котельной не такие строгие. После пуска затраты на эксплуатацию минимальные. Оплачивается только электричество, насос средней мощности потребляет около 4 кВт в час. Современные модели импульсные, работают не беспрерывно, а включаются при необходимости. Это снижает количество рабочих часов в сезон и затраты энергии.

Главный недостаток геотермального отопления – цена вопроса, даже китайский или отечественный агрегат, не говоря о европейских брендах, стоит несколько тысяч евро. Вместе с обустройством внешнего контура и монтажом, удовольствие выльется в сотни тысяч рублей. Согласно расчетам экспертов и владельцев, насос окупается за несколько лет. Работает он на дармовом источнике, по сравнению со стоимостью тонны угля или куба дров, экономия значительная. Но далеко не у каждого есть лишних полмиллиона на оборудование и пусконаладку.

Если недалеко от участка водоем, получается значительно дешевле, отпадают траты на дорогостоящее бурение.

Действующие скважины тоже оптимизируют процесс, становясь источником тепла. Это подтверждает форумчанин дет марос из Усть-Каменогорска. Он работает на предприятии, выпускающем тепловые насосы и оказывающем услуги по их установке. Поэтому досконально разбирается в ситуации и на вопрос участника ветки, нужны ли ему зонды, если на участке есть скважины, ответил исчерпывающе.

дет марос Участник FORUMHOUSE

Зачем вам заморачиваться с зондами, если воды хватает. Будете гонять из одной скважины в другую через ТН. С зондами возимся, когда на участке нет воды или столб маленький, потребности не покрывает. Для насоса мощностью 10 кВт нужен объем в 3 куба.

Секреты самоделкиных

Но самая большая экономия получается, когда тепловой насос собирают своими руками. Ведущий узел – компрессор, берут от мощных кондиционеров и сплит-систем, технические параметры у них сходные. Теплообменники продаются готовые, но некоторые умельцы и их умудряются паять из медных труб. В качестве хладагента – фреон, его тоже продают в баллонах. Контроллеры, реле, стабилизаторы, все элементы по отдельности обойдутся вполовину дешевле, чем в готовом комплекте.

Чаще всего самоделки организуют над прудами или когда уже есть действующая скважина. Из-за того, что львиная доля расходов приходится именно на земляные работы, и экономия максимальная на них же.

Умелец aparat2 , из Риги, сам собрал геотермальное и выложил об этом фоторепортаж, с подробным описанием всех операций.

aparat2 Участник FORUMHOUSE

Собрал ТН из двух однофазных компрессоров по 24000 БТУ (7 кв. ч. по холоду). Получился каскад, тепловой мощностью 16-18 киловатт, при расходе электричества около 4,5 кВт в час. Выбрал два компрессора, чтобы были токи меньше, запускать буду не одновременно. А пока обжит только второй этаж и хватит одного компрессора. Да и, поэкспериментировав на одном, потом усовершенствую вторую конструкцию.

Также форумчанин решил не тратиться на готовые теплообменники пластинчатого типа. Они требовательны к водоподготовке, да и стоят весомо. Самодельный обменник он совместил с аккумулятором, чтобы повысить отдачу. Получилась рабочая установка в разы дешевле покупной.

Тем не менее, тепловые насосы– это альтернативный вариант, когда нет газа и большие площади отопления. Даже при самостоятельной сборке системы затраты на комплектующие солидные. Ближе изучить тему можно на ветке по , там масса полезных советов, форумчане делятся опытом, обсуждают различные модели. поможет разобраться со сборкой. А варианты отопления большого дома без газа в ролике – наглядный пример. Для владельцев деревянных домов – видео

Сегодня тема отопления так называемого частного сектора крайне актуальна. Как показывает практика, там не всегда есть газопровод, поэтому люди вынуждены искать альтернативные источники тепла. Давайте в данной статье поговорим о том, что такое грунтовый геотермальный теплонасос или, как его называют в быту - тепловой насос. Принцип работы данного агрегата известен далеко не каждому, ровно как и его конструкция. С этими моментами мы и попытаемся разобраться.

Что нужно знать?

Вы можете говорить о том, что раз тепловые насосы такие эффективные, то почему так слабо распространены. Все дело заключается в высокой стоимости оборудования и монтажа. Именно по этой простой причине многие отказываются от данного решения и выбирают, скажем, электрические или угольные котлы. Тем не менее отбрасывать данный вариант не стоит по многим причинам, о чем мы обязательно скажем в данной статье. Тепловые насосы после установки становятся весьма экономичными, так как используют энергию грунта. Геотермальный насос - это 3 в 1. Он сочетает в себе не только отопительный котел и систему ГВС, но и кондиционер. Давайте поближе познакомимся с данным оборудованием и рассмотрим все его сильные и слабые стороны.

Принцип действия агрегата

Принцип работы теплового насоса для отопления заключается в использовании разности потенциалов тепловой энергии. Именно поэтому подобное оборудование может применяться в любой среде. Главное, чтобы её температура была не менее 1 градуса по Цельсию.

Мы имеем теплоноситель, который движется по трубопроводу, где, собственно, и нагревается на 2-5 градусов. После этого теплоноситель поступает в теплообменник (внутренний контур), где отдает собранную энергию. В это время во внешнем контуре есть хладагент, который имеет низкую температуру кипения. Соответственно, он превращается в газ. Поступая в компрессор, газ сжимается, в результате чего его температура становится еще выше. Дальше газ идет на конденсатор, где теряет свое тепло, отдавая его системе отопления. Хладагент приобретает жидкое состояние и поступает обратно во внешний контур.

Вкратце о видах тепловых насосов

Сегодня известно несколько популярных конструкций геотермальных насосов. Но при любом раскладе их принцип действия можно сравнивать с работой холодильной техники. Именно поэтому независимо от вида насос в летнее время может быть использован в качестве кондиционера. Так вот, тепловые насосы классифицируются по тому, откуда они могут добывать тепло:

  • Из грунта;
  • Из водоема;
  • Из воздуха.

Первый вид наиболее предпочтителен в холодных регионах. Дело в том, что температура воздуха зачастую опускается до -20 и ниже (на примере РФ), а вот глубина промерзания грунта обычно несущественная. Что касается водоемов, то они есть не везде, да и использовать их не слишком целесообразно. В любом случае, лучше выбирать грунтовый тепловой насос для отопления дома. Принцип работы агрегата мы немного рассмотрели, поэтому идем дальше.

«Грунт-вода»: как лучше разместить?

Получение тепла из грунта считается наиболее целесообразным и рациональным. Обусловлено это тем, что на глубине 5 метров практически не происходит температурных колебаний. В качестве теплоносителя используется специальная жидкость. Её принято называть рассолом. Она является полностью экологически безопасной.

Что касается метода размещения, то есть горизонтальный и вертикальный. Первый вид характерен тем, что пластиковые трубы, представляющие внешний контур, укладываются на площади горизонтально. Это весьма проблематично, так как работы по укладке должны проводиться на площади 25-50 квадратных метров. В случае с вертикальным расположением бурятся вертикальные скважины глубиной 50-150 метров. Чем глубже будут уложены зонды, тем эффективней будет работать геотермальный тепловой насос. Принцип работы мы уже рассмотрели, а сейчас поговорим еще о важных деталях.

Тепловой насос «Вода-вода»: принцип работы

Также не стоит сразу отбрасывать возможность использования кинетической энергии воды. Дело в том, что на большой глубине температура остается достаточно высокой и изменяется в небольших диапазонах, если это вообще происходит. Вы можете пойти несколькими путями и использовать:

  • Открытые водоемы, такие как реки и озера.
  • Грунтовые воды (скважина, колодец).
  • Сточные воды пром.циклов (обратное водоснабжение).

С экономической и технической точки зрения проще всего наладить работу геотермального насоса в открытом водоеме. При этом существенных конструктивных отличий между насосами «грунт-вода» и «вода-вода» нет. В последнем случае погружаемые в открытый водоем трубы снабжаются грузом. Что касается использования грунтовых вод, то конструкция и монтаж более сложные. Необходимо выделить отдельную скважину для сброса воды.

Принцип работы теплового насоса «Воздух-вода»

Такой тип насосов считается одним из наименее эффективных по целому ряду причин. Во-первых, в холодное время года температура воздушных масс существенно понижается. В конечном итоге это приводит к уменьшению мощности насоса. Он может не справиться с отоплением большого дома. Во-вторых, конструкция более сложная и менее надежная. Тем не менее расходы на монтаж и обслуживание существенно снижаются. Это обусловлено тем, что вам не нужен водоем, колодец, а также не требуется копать траншеи под трубы на дачном участке.

Размещается система на крыше здания или в другом подходящем месте. Стоит заметить, что подобная конструкция имеет один существенный плюс. Он заключается в возможности использования отработанных газов, воздуха, который покидает помещение, повторно. Этим можно компенсировать недостаточную мощность оборудования в зимний период.

Насосы «воздух-воздух» и кое-что еще

Подобные установки встречаются еще реже, нежели «Воздух-вода», на что есть целый ряд причин. Как вы уже догадались, в нашем случае в качестве теплоносителя используется воздух, который нагревается от более теплой воздушной массы из окружающей среды. Есть большое количество недостатков такой системы, начиная от низкой производительности и заканчивая высокой стоимостью.Тепловой насос "воздух-воздух", принцип работы которого вы знаете, неплох только в теплых регионах.

Тут есть и сильные стороны. Во-первых, дешевизна теплоносителя. Скорее всего, вы не столкнетесь с проблемой течи воздухопровода. Во-вторых, эффективность такого решения крайне высока в весенне-осенний период. Зимой же использовать воздушный тепловой насос, принцип работы которого мы рассмотрели, нецелесообразно.

Самодельный тепловой насос

Проведенные исследования показали, что срок окупаемости оборудования напрямую зависит от отапливаемой площади. Если речь идет о доме в 400 квадратных метров, то это примерно 2-2,5 года. А вот для тех, кто имеет жилье площадью поменьше, вполне можно использовать самодельные насосы. Может показаться, что сделать такое оборудование сложно, но на самом деле это несколько не так. Достаточно закупить необходимые комплектующие, и можно приступать к монтажу.

Первым делом приобретается компрессор. Можно взять такой, какой на кондиционере. Монтируют его аналогичным образом на стену здания. Помимо этого, нужен конденсатор. Его можно соорудить самостоятельно или же купить. Если пойти первым методом, то понадобится медный змеевик толщиной не менее 1мм, его помещают в корпус. Это может быть подходящий по габаритам бак. После монтажа бак сваривается, и делаются нужные резьбовые соединения.

Заключительная часть работ

При любом раскладе на окончательной стадии вам потребуется нанять специалиста. Именно знающий человек должен осуществлять пайку медных трубок, закачку фреона, а также первый запуск компрессора. После сборки всей конструкции её подключают к внутренней системе отопления. Наружный контур устанавливается в последнюю очередь, а его особенности зависят от типа используемого теплового насоса.

Не стоит упускать из виду такой важный момент, как замена устаревшей или поврежденной проводки в доме. Специалисты рекомендуют устанавливать счетчик мощностью не менее 40 ампер, чего должно быть вполне достаточно для эксплуатации теплового насоса. Не лишним будет отметить, что в некоторых случаях подобное оборудование не оправдывает ожидания. Это обусловлено, в частности, неточными термодинамическими расчетами. Чтобы не случилось так, что вы потратили кучу денег на отопление, а зимой пришлось поставить угольный котел, обращайтесь в проверенные организации с положительными отзывами.

Безопасность и экологичность прежде всего

Отопление с помощью описанных в данной статье насосов является одним из наиболее экологических методов. Обусловлено это по большей части сокращением выбросов в атмосферу углекислых газов, а также сбережением невосстанавливаемых энергоресурсов. Кстати, в нашем случае используются возобновляемые ресурсы, поэтому бояться, что тепло вдруг закончится, не стоит. Благодаря использованию вещества, кипящего при низких температурах, появилась возможность реализовать обратный термодинамический цикл и при меньших затратах энергии получать достаточное количество тепла в дом. Что касается пожаробезопасности, то тут и так все понятно. Нет вероятности утечки газа или мазута, взрыва, нет опасных мест для хранения горючих материалов и многое другое. В этом плане тепловые насосы очень хороши.

Заключение

Теперь вы полностью знакомы с тем, что такое и каким может быть тепловой насос (принцип работы). Своими руками подобный агрегат сделать можно, а в некоторых случаях даже нужно. В этом случае вы можете сэкономить порядка 30% средств на покупку оборудования. Но опять же монтажными работами желательно должен заниматься специалист, это же касается и проводимых расчетов.

Как ни крути, сегодня это еще достаточно дорогостоящий вид отопления с большим сроком окупаемости. В большинстве случаев куда проще провести газ или топить углем или дровами. Тем не менее для больших загородных домов это очень перспективный вид отопления. Его говорить об экономичности оборудования, то получается что на 1 кВт потраченной энергии мы получаем порядка 5-7 кВт тепловой. По охлаждению это 2-2,5 кВт на выходе, что тоже очень даже неплохо. Стоит отметить еще и бесшумность работы насоса. Вот, в принципе, и все, что можно рассказать по данной теме.

Попробуем объяснить на языке простого обывателя, что же такое «ТЕПЛОВОЙ НАСОС «:

Тепловой насос – это специальное устройство, которое совмещает в себе котел, источник горячего водоснабжения и кондиционер для охлаждения. Главным отличием теплового насосаот других источников тепла является возможность использования возобновляемой низкопотенциальной энергии, взятой с окружающей среды (земли, воды, воздуха, сточных вод) для покрытия нужд в тепле во время отопительного сезона, нагрева воды для горячего водоснабжения и охлаждения дома. Поэтому тепловой насос обеспечивает высокоэффективное энергоснабжение без газа и других углеводородов.

Тепловой насос – это устройство, которое работает по принципу обратной холодильной машины, передавая тепло от низкотемпературного источника к среде с более высокой температурой, например системе отопления вашего дома.

Каждая теплонасосная система имеет следующие основные компоненты:

— первичный контур – закрытая циркуляционная система, которая служит для передачи тепла от грунта, воды или воздуха к тепловому насосу.
— вторичный контур – закрытая система, которая служит для передачи тепла от теплового насоса к системе отопления, горячего водоснабжения или вентиляции (подогрев притока) в доме.

Принцип работы теплового насоса похож на работу обыкновенного холодильника, только наоборот. Холодильник отбирает тепло от пищевых продуктов и переносит его наружу (на радиатор, размещенный на его задней стенке). Тепловой насос же переносит тепло, накопленное в почве, земле, водоеме, подземных водах или воздухе, в Ваш дом. Как и холодильник, этот энергоэффективный теплогенератор имеет следующие основные элементы:

— конденсатор (теплообменник, в котором происходит передача тепла от хладагента к элементам системы отопления помещения: низкотемпературным радиаторам, фанкойлам, теплому полу, панелям лучистого отопления/охлаждения);
— дроссель (устройство, которое служит для снижения давления, температуры и, как следствие, замыкания теплофикационного цикла в тепловом насосе);
— испаритель (теплообменник, в котором происходит отбор тепла от низкотемпературного источника к тепловому насосу);
— компрессор (устройство, в которое повышает давление и температуру паров хладагента).

Тепловой насос обустроен таким образом, чтобы заставить тепло двигаться в различных направлениях. Например, во время нагрева дома, тепло отбирается от какого-нибудь холодного наружного источника (земли, реки, озера, наружного воздуха) и передается в дом. Для охлаждения (кондиционирования) дома тепло отбирается от более теплого воздуха в доме и передается наружу (сбрасывается). В этом отношении тепловой насос похож на обычный гидравлический насос, который перекачивает жидкость с нижнего уровня на верхний, тогда как в обыкновенных условиях жидкость всегда двигается с верхнего уровня на нижний.

На сегодняшний день наиболее распостраненными есть парокомпрессионные тепловые насосы. В основу принципа их действия лежат два явления: во-первых, поглощение и выделение тепла жидкостью при смене агрегатного состояния – испарение и конденсация, соответственно; во-вторых, изменение температуры испарения (и конденсации) при изменении давления.

В испарителе теплового насоса рабочим телом есть — хладагент, который не содержит хлора, — он находится под низким давлением и кипит при низкой температуре, поглощая тепло низкопотенциального источника (например, грунт). Потом рабочее тело сжимается в компрессоре, который приводится в движение с помощью электрического или другого двигателя, и попадает в конденсатор, где при высоком давлении конденсируется при более высокой температуре, отдавая тепло конденсации приемнику тепла (например, теплоносителю системы отопления). С конденсатора рабочее тело через дроссель опять попадает в испаритель, где его давление понижается, и процесс кипения хладагента начинается заново.

Тепловой насос способен отбирать тепло от различных источников, например, воздух, вода, грунт. Также, он может сбрасывать тепло в воздух, воду или землю. Более теплая среда, которая воспринимает тепло, называется теплоприемником.

Тепловой насос X/Y использует в качестве источника тепла среду Х, носитель тепла Y. Различают насосы «воздух-вода», «грунт-вода», «вода-вода», «воздух-воздух», «грунт-воздух», «вода-воздух».

Тепловой насос «грунт-вода»:

Тепловой насос «воздух-вода»:

Регулирование работы системы отопления с использованием тепловых насосов в большинстве случаях осуществляется с помощью его включения и выключения по сигналу датчика температуры, который установлен в приемнике (при нагревании) или источнике (при охлаждении) тепла. Настройка теплового насоса обычно осуществляется сменой сечения дросселя (терморегулирующего вентиля).

Как и холодильная машина, тепловой насос использует механическую (электрическую или другую) энергию для реализации термодинамического цикла. Эта энергия используется на привод компрессора (современные тепловые насосы мощностью до 100 кВт комплектируются высокоэффективными скролл компрессорами).

(коэффициент трансформации или эффективности) теплового насоса – это соотношение количества тепловой энергии которую производит тепловой насос до количества электрической энергии, которую он потребляет.

Коэффициент преобразования COP зависит от уровня температур в испарителе и конденсаторе теплового насоса. Это значение колеблется для различных теплонасосных систем в диапазоне от 2,5 до 7, то есть на 1 кВт затраченной электрической энергии тепловой насос вырабатывает от 2,5 до 7 кВт тепловой энергии, что не под силу ни конденсационному газовому котлу, ни любому другому генератору тепла.

Поэтому можно утверждать, что тепловые насосы производят тепло, используя минимальное количество дорогой электрической энергии.

Энергосбережение и эффективность использования теплового насоса в первую очередь зависит от того, откуда вы решите черпать низкотемпературное тепло, во вторую – от способа отопления вашего дома (водой или воздухом) .

Дело в том, что тепловой насос работает как «перевалочная база» между двумя тепловыми контурами: одним, греющим на входе (на стороне испарителя) и вторым, отапливаемым, на выходе (конденсатор).

Для всех типов тепловых насосов характерен ряд особенностей, о которых нужно помнить при выборе модели:

Во-первых, тепловой насос оправдывает себя лишь в хорошо утепленном доме. Чем более теплый дом, тем больше выгода при использовании данного устройства. Как вы понимаете, отапливать улицу с помощью теплового насоса, собирая из нее же крохи тепла – не совсем разумно.

Во-вторых, чем больше разница температур теплоносителей во входном и выходном контурах, тем меньший коэффициент преобразования тепла (СОР), то есть меньшая экономия электрической энергии. Именно поэтому более выгодное подключение теплового насоса к низкотемпературным системам отопления . Прежде всего, речь идет об отоплении водным теплым полом или инфракрасными водяными потолочными или стеновыми панелями. А вот чем более горячую воду тепловой насос готовит для выходного контура (радиаторов или душа), тем меньшую мощность он развивает и тем больше потребляет электричества.

В-третьих, для достижения большей выгоды практикуется эксплуатация теплового насоса с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления ).

<<< к разделу ТЕПЛОВОЙ НАСОС

<<< выбор вентиляционного оборудования

<<< назад к СТАТЬЯМ

Тепловые насосы для отопления дома: плюсы и минусы

1. Особенности работы тепловых насосов
2. Виды тепловых насосов
3. Тепловые насосы геотермального вида
4. Преимущества и недостатки тепловых насосов

Одним из высокоэффективных способов отопления загородного дома является использование тепловых насосов.

Принцип работы тепловых насосов основан на извлечении тепловой энергии из грунта, водоемов, подземных вод, воздуха. Тепловые насосы для отопления дома не оказывают вредного воздействия на окружающую среду. Как выглядят подобные отопительные системы, можно посмотреть на фото.

Такая организация обогрева дома и горячего водоснабжения возможна уже много лет, но распространение начала получать совсем недавно.

Особенности работы тепловых насосов

Принцип работы таких устройств похож на холодильное оборудование.

Тепловые насосы забирают тепло, аккумулируют его и обогащают, а затем передают его теплоносителю. В качестве выделяющего тепло устройства применяется конденсатор, а для утилизации теплоты с низким потенциалом используется испаритель.

Постоянное повышение стоимости электричества и предъявление жестких требований к охране окружающей среды становится причиной поиска альтернативных методов получения тепла для отопления домов и подогрева воды.

Одним из них является использование тепловых насосов, поскольку количество получаемой тепловой энергии в несколько раз превышает затраченное электричество (подробнее: «Экономное отопление электричеством: за и против»).

Если сравнить отопление газом, твердым или жидким топливом, с тепловыми насосами, то последние окажутся более экономичными. Однако само обустройство системы отопления с такими агрегатами обходится гораздо дороже.

Тепловые насосы потребляют электроэнергию, необходимую для работы компрессора. Поэтому такой вид обогрева зданий не подходит в том случае, если в местности наблюдаются частые проблемы с электроснабжением.

Отопление частного дома тепловым насосом может иметь разную эффективность, главным ее показателем является преобразование теплоты — разница между потребленной электроэнергией и полученным теплом.

Разница между температурой испарителя и конденсатора присутствует всегда.

Чем она больше, тем меньше КПД устройства. По этой причине, пользуясь тепловым насосом, нужно иметь немалый источник низко потенциального тепла. Исходя из этого, следует, что чем больше размер теплообменника, тем меньше энергопотребление. Но в то же время, устройства с большими габаритами имеют гораздо более высокую стоимость.

Отопление с помощью теплового насоса встречается во многих развитых странах.

Причем они используются и для обогрева многоквартирных и общественных зданий – это намного экономнее привычной в нашей стране системы отопления.

Виды тепловых насосов

Эти устройства можно использовать в широком диапазоне температур. Обычно они нормально работают при температуре от – 30 до + 35 градусов.

Самыми популярными являются абсорбционные и компрессионные тепловые насосы.

Последние из них используют для передачи тепла механическую и электрическую энергию. Абсорбционные насосы устроены сложнее, но они способны передавать тепло, используя для этого сам источник, благодаря чему значительно снижаются затраты электроэнергии.

Что касается источников тепла, то данные агрегаты делятся на следующие виды:

  • воздушные;
  • геотермальные;
  • вторичного тепла.

Воздушные тепловые насосы для отопления забирают тепло из окружающего воздуха.

Геотермальные пользуются тепловой энергией земли, подземных и наземных вод (детальнее: «Геотермальное отопление: принцип работы на примерах»). Тепловые насосы вторичного тепла забирают энергию канализационных стоков, центрального отопления – эти устройства в основном используются для обогрева промышленных зданий.

Это особенно выгодно в том случае, если имеются источники тепла, которое подлежит утилизации (прочитайте также: «Используем тепло земли для отопления дома»).

Тепловые насосы классифицируются и по видам теплоносителя, им может служить воздух, грунт, вода, а также их сочетания.

Тепловые насосы геотермального вида

Системы отопления, в которых используются тепловые насосы, делятся на два вида – открытые и закрытые. Открытые конструкции предназначены для нагрева проходящей через тепловой насос воды. После того, как теплоноситель проходит по системе, он выводится обратно в землю.

Подобная система идеально работает лишь при наличии значительного объема чистой воды, учитывая тот факт, что ее потребление не станет наносить окружающей среде вред и не вступит в противоречие с действующим законодательством. Поэтому, прежде чем воспользоваться отопительной системой, получающей энергию из грунтовых вод, следует проконсультироваться с соответствующими организациями.

Закрытые системы делятся на несколько видов:

  1. Геотермальные с горизонтальным расположением подразумевают укладку коллектора в траншее ниже глубины промерзания почвы.

    Это – примерно 1,5 метра. Коллектор укладывают кольцами с той целью, чтобы уменьшить площадь земляных работ до минимума и обеспечить на небольшой площади достаточный контур (прочитайте: «Геотермальные тепловые насосы для отопления: принцип устройства системы»).

    Данный метод подходит лишь в том случае, если имеется в распоряжении достаточно свободной площади участка.

  2. Геотермальные конструкции с вертикальным расположением предусматривают размещение коллектора в скважине глубиной до 200 метра. Такой метод применяется при отсутствии возможности расположить теплообменник на большой площади, что необходимо для горизонтальной скважины.

    Также геотермальные системы с вертикальными скважинами делают в случае неровного ландшафта участка.

  3. Геотермальные водные подразумевают помещение коллектора в водоем на глубину ниже уровня промерзания. Укладка выполняется кольцами. Такие системы не могут использоваться, если водоем имеет небольшие размеры или недостаточную глубину.

    Необходимо учитывать, что в случае промерзания водоема на том уровне, где находится коллектор, насос работать не сможет.


Тепловой насос воздух вода — особенности, детали на видео:

Преимущества и недостатки тепловых насосов

Отопление загородного дома тепловым насосом имеет как положительные, так и отрицательные стороны. Одним из основных преимуществ отопительных систем является экологичность.

Также тепловые насосы экономичны, в отличие от других обогревателей, потребляющих электроэнергию. Так, количество вырабатываемой тепловой энергии в несколько раз больше потребляемого электричества.

Тепловые насосы отличаются повышенной пожаробезопасностью, их можно использовать и без создания дополнительной вентиляции.

Так как система имеет замкнутый контур, финансовые траты при эксплуатации сведены к минимуму – платить приходится лишь за потребляемую электроэнергию.

Применение тепловых насосов также позволяют охлаждать помещение летом – это возможно благодаря подключению к коллектору фэн-койлов и системы «холодный потолок».

Эти устройства надежны, а управление процессами работы полностью автоматическое. Поэтому для эксплуатации тепловых насосов не требуются особые навыки.

Немало значение имеют и компактные размеры устройств.

Основной недостаток тепловых насосов:

  • высокая стоимость и значительные затраты на монтажные работы. Сконструировать отопление тепловым насосом своими руками вряд ли получится, не имея специальных знаний. Чтобы вложения окупились, потребуется не один год;
  • срок эксплуатации устройств составляет примерно 20 лет, после этого высока вероятность того, что потребуется проводить капитальный ремонт.

    Это тоже обойдется недешево;

  • цена тепловых насосов в несколько раз превышает стоимость котлов, работающих на газу, твердом или жидком топливе. Немало денег придется выложить и за бурение скважин.

Но с другой стороны, тепловым насосам не требуется регулярное обслуживание, как в случае с многими другими отопительными приборами.

Несмотря на все достоинства тепловых насосов, они до сих пор мало распространены. Это связано, в первую очередь, с высокой стоимостью самого оборудования и его установки. Удастся сэкономить лишь в случае создания системы с горизонтальным теплообменником, если выкапывать траншеи самостоятельно, но на этой уйдет не один день. Что же касается эксплуатации, то оборудование оказывается весьма выгодным.

Тепловые насосы – это экономичный способ обогрева зданий, который не наносит вреда окружающей среде.

Они не могут получить широкого распространения из-за высокой стоимости, но в будущем ситуация может измениться. В развитых странах тепловыми насосами пользуются многие владельцы частных домов – там правительство поощряет заботу об экологии, и стоимость такого вида отопления невысока.

Тепловой грунтовый или геотермальный насос – одна из наиболее энергоэффективных систем альтернативной энергетики. Его работа не зависит от времени года и температуры окружающей среды, как для насоса воздух-воздух, не ограничена наличием рядом с домом водоема или колодца с грунтовыми водами, как система вода-вода.

Тепловой насос грунт-вода, использующий для нагрева теплоносителя в системе отопления тепло, отбираемое у почвы, имеет самый высокий и постоянный КПД, а также коэффициент преобразования энергии (СОР).

Его значение составляет 1:3,5-5, то есть каждыйзатраченный на работу насоса киловатт электричества возвращается 3,5-5 киловаттами тепловой энергии. Таким образом, отопительная мощность грунтового насоса вполне позволяет использовать его как единственный источник тепла даже в доме с большой площадью, конечно, при установке агрегата соответствующей мощности.

Погружной грунтовый насос требует оборудования почвенного контура с циркулирующим хладоносителем для отбора тепла земли.

Возможны два варианта его размещения: горизонтальный грунтовой коллектор (система труб на небольшой глубине, но остаточно большой площади) и вертикальный зонд, размещаемый в скважине от 50 до 200 м глубиной.

Эффективность теплообмена с почвой существенно зависит от того, какой залегает грунт – грунт влагонаполненный отдает намного больше тепла, чем, к примеру, песчаная почва.

Больше всего распространены насосы, работающие по принципу грунт-вода, в которых хладоноситель запасает энергию почвы и в результате прохождения через компрессор и теплообменник передает ее воде как теплоносителю в системе отопления. Цены на грунтовые насосы такого типа соответствуют их высокой эффективности и производительности.


Погружной грунтовый насос

Любые сложные высокотехнологичные агрегаты, такие как грунтовые насосы ГрАТ, а также почвенные тепловые насосы требуют к себе внимания профессионалов.

Тепловой насос

Мы предлагаем полный спектр услуг по реализации, монтажу и обслуживанию систем отопления и горячего водоснабжения на основе тепловых насосов.

На сегодняшний день среди представленных на рынке стран-производителей таких агрегатов особо популярны европейские страны и Китай.

Самые известные модели тепловых насосов: Nibe, Stiebel Eltron, Mitsubishi Zubadan, Waterkotte. Не менее востребован также и отечественный грунтовый тепловой насос.

Наша компания предпочитает работать только с оборудованием надежных европейских производителей: Viessmann и Nibe.

Тепловой насос извлекает накопленную энергию из различных источников – грунтовых, артезианских и термальных вод – вод рек, озер, морей; очищенных промышленных и бытовых стоков; вентиляционных выбросов и дымовых газов; грунта и земных недр – переносит и превращает в энергию более высоких температур.

Теплонасос – высокоэкономичная, экологически чистая технология обогрева и комфорта

Тепловая энергия существует вокруг нас, проблема в том, как ее извлечь, не затрачивая при этом значительных энергоресурсов.

Тепловые насосы извлекает накопленную энергию из различных источников – грунтовых, артезианских и термальных вод – вод рек, озер, морей; очищенных промышленных и бытовых стоков; вентиляционных выбросов и дымовых газов; грунта и земных недр – переносит и превращает в энергию более высоких температур.

Выбор оптимального теплового источника зависит от многих факторов: размера энергетических потребностей Вашего дома, установленной отопительной системы, природных условий региона Вашего проживания.

Устройство и принцип работы теплового насоса

Теплонасос функционирует как холодильник- только наоборот.

Холодильник переносит тепло изнутри во вне.

Теплонасос переносит тепло, накопленное в воздухе, почве, недрах или воде, в ваш дом.

Теплонасос состоит из 4 основных агрегатов:

Испаритель,

Конденсатор,

Расширительный вентиль (разряжающий вентиль-
дроссель, понижает давление),

Компрессор (повышает давление).

Эти агрегаты связаны замкнутым трубопроводом.

В системе трубопровода циркулирует хладагент, который в одной части цикла представляет собой жидкость, а в другой- газ.

Земные недра как глубинный теплоисточник

Земные недра являются бесплатным теплоисточником, поддерживающим одинаковую температуру круглый год.

Использование тепла земных недр является экологически чистой, надежной и безопасной технологией обеспечивания теплом и горячим водоснабжением всех типов зданий, больших и малых, общественных и частных. Уровень капиталовложений достаточно высокий, но взамен Вы получите безопасную в работе, с минимальными требованиями к сервисному обслуживанию альтернативную обогревательную систему с максимально длительным сроком эксплуатации. Коэффициент преобразования тепла (см.

стр. 6) высок, достигает 3. Установка не требует много места и может быть внедрена на участке земли малой плошади. Объем восстановительных работ после бурения незначителен, влияние пробуренной скважины на окружающую среду минимально. На уровень грунтовых вод воздействие не оказывается, так как грунтовые воды не потребляются. Тепловая энергия переносится к конвекционной системе водяного отопления и применяется для горячего водоснабжения.

Грунтовое тепло – близкозалегающая энергия

В поверхностном слое земли накапливается тепло в течение лета.

Использование этой энергии для обогрева целесообразно для зданий с высокими энергорасходами. Наибольшее количество энергии извлекается из почвы с большим содержанием влаги.

Грунтовый теплонасос

Водные теплоисточники

Солнце нагревает воду в морях, озерах и других водных источниках.

Солнечная энергия накапливается в воде и донных слоях. Редко температура снижается ниже +4 °С. Чем ближе к поверхности, тем температура больше варьируется в течение года, а в глубине – она относительно стабильна.

Теплонасос с водным источником тепла

Шланг для передачи тепла укладывается на дне или в грунте дна, где температура еще немного выше,
чем температура воды.

Важно, чтобы шланг снабжался отягощающим грузом для предотвращения
всплытия шланга на поверхность. Чем ниже он залегает, тем меньше риск повреждения.

Водный источник как источник тепла очень эффективен для зданий с относительно высокими потребностями в теплоэнергии.

Тепло грунтовых вод

Даже грунтовые воды могут использоваться для обогрева зданий.

Для этого требуется пробуренный колодец, откуда вода закачивается в теплонасос.

При использовании грунтовой воды к ее качеству предъявляются высокие требования.

Теплонасос с грунтовой водой в качестве источника тепла

После прохождения теплонасоса вода может транспортироваться в отводной канал или колодец. Такое решение может привести к нежелательному снижению уровня грунтовых вод, а также снизить эксплуатационную надежность установки и оказать негативное воздействие на близрасположенные колодцы.

Сейчас данный метод используется все меньше.

Грунтовая вода также может быть возвращена в землю также путем частичной или полной инфильтрации.

Такой выгодный теплонасос

Коэффициент преобразования тепла

Чем выше эффективность теплонасоса, тем выгоднее он.

Эффективность определяется так называемым коэффициентом преобразования тепла или коэффициентом температурной трансформации, который представляет собой отношение количества энергии, генерируемой теплонасосом, к количеству энергии, затрачиваемой на процесс переноса тепла.

Например: Коэффициент температурной трансформации равен 3.

Это означает, что теплонасос поставляет в 3 раза больше энергии, чем потребляет. Другими словами, 2/3 получено «бесплатно» от теплоисточника.

Как сделать тепловой насос для отопления дома своими руками: принцип работы и схемы

Чем выше энергопотребности Вашего жилища, тем больше вы экономите денежных средств.

Примечание На значение коэффициента температурной трансформации влияет присутсвие/игнорирование в расчетах параметров дополнительного оборудования (циркуляционных насосов), а также различные температурные режимы.

Чем ниже температурное распределение, тем выше становится коэффициент температурной трансформации, теплонасосы наиболее эффективны в отопителных системах с низкотемпературными характеристиками.

При подборе теплонасоса к Вашей обогревательной системе невыгодно ориентировать
мощностные показатели теплонасоса на максимальные требования к мощности (на покрытие энергорасходов в отопительном контуре в самый холодный день года).

Опыт показывает, что теплонасос должен генерировать около 50-70% от этого максимума, теплонасос должен покрывать 70-90% (в зависимости от теплоисточника) от общей годовой потребности в энергии для отопления и го-рячеговодоснабжения. При низких внешних температурах теплонасос применяется с имеющимся в наличии котельным оборудованием или пиковым доводчиком, которым укомплектован теплонасос.

Сравнение затрат на устройство системы отопления индивидуального дома на основе теплового насоса и жидкотопливного котла.

Для анализа возьмем дом площадью в 150-200 кв.м.

Наиболее распространенный сегодня вариант современного загородного дома постоянного пользования.
Применение современных строительных материалов и технологий обеспечивает величину теплопотерь здания на уровне 55 вт./кв.м пола.
Для покрытия суммарных потребностей в тепловой энергии, расходуемой на отопление и горячее водоснабжение такого дома, необходимо установить тепловой насос или котел тепловой мощностью примерно 12 квт/ч.
Стоимость самого теплового насоса или котла на дизельном топливе составляет всего лишь часть затрат, которые необходимо произвести для ввода в эксплуатацию системы отопления в целом.

Ниже приведен далеко неполный список основных сопутствующих затрат по устройству системы отопления «под ключ» на основе котла на жидком топливе, отсутствующих в случае применения теплового насоса:

фильтр- воздухоотводчик, фикспакет, группа безопасности, горелка, система обвязки котла, панель управления с погодозависимой автоматикой, аварийный электрокотел, топливный бак, дымовая труба, бойлер.

Все это в сумме составляет не менее 8000-9000 евро. Принимая во внимание необходимость устройства самого помещения котельной как таковой, стоимость которого учитывая все требования надзорных органов составляет еще несколько тысяч евро, мы приходим к парадоксальному на первый взгляд выводу, а именно – о практической сопоставимости первоначальных капитальных затрат при устройстве системы отопления «под ключ» на основе теплового насоса и котла на жидком топливе.

В обоих случаях сумма затрат приближается к 15 тыс.евро.

Учитывая следующие неоспоримые преимущества теплового насоса, такие как:
Экономичность. При стоимости 1 кВт электроэнергии 1руб 40коп, 1 кВт тепловой мощности нам обойдется не более 30-45 коп, в то время как 1кВт тепловой энергии от котла обойдется уже в 1 руб 70 коп (при цене солярки 17 руб/л);
Экология. Экологически чистый метод отопления как для окружающей среды, так и для людей находящихся в помещении;
Безопасность. Нет открытого пламени, нет выхлопа, нет сажи, нет запаха солярки, исключена утечка газа, разлив мазута.

Нет пожароопасных хранилищ для угля, дров, мазута или солярки;

Надежность. Минимум подвижных частей с высоким ресурсом работы. Независимость от поставки топочного материала и его качества. Практически не требует обслуживания. Срок службы теплового насоса составляет 15 – 25 лет;
Комфорт. Тепловой насос работает бесшумно (не громче холодильника);
Гибкость. Тепловой насос совместим с любой циркуляционной системой отопления, а современный дизайн позволяет устанавливать его в любых помещениях;

все большее количество владельцев индивидуальных домов выбирают тепловой насос для отопления как в новом строительстве, так и при модернизации существующей системы отопления.

Устройство теплового насоса

Приповерхностную технологию использования низкопотенциальной тепловой энергии с помощью теплового насоса можно рассматривать как некоторый технико-экономический феномен или реальную революцию в системе теплообеспечения.

Устройство теплового насоса. Основными элементами теплового насоса являются соединенные трубопроводом испаритель, компрессор, конденсатор и регулятор потока – дроссель, детандер или вихревая труба (Рис.16).

Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (теплоноситель, собирающий теплоту окружающей среды), во втором - хладагент (вещество, которое испаряется, отбирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику), в третьем - теплоприемник (вода в системах отопления и горячего водоснабжения здания).

16. Устройство теплового насоса

Внешний контур (коллектор) представляет собой уложенный в землю или в воду трубопровод, в котором циркулирует незамерзающая жидкость - антифриз. Следует отметить, что в качестве источника низкопотенциальной энергии может выступать как тепло естественного (наружный воздух; тепло грунтовых, артезианских и термальных вод; воды рек, озер, морей и других незамерзающих природных водоемов), так и техногенного происхождения (промышленные сбросы, очистные сооружения, тепло силовых трансформаторов и любое другое бросовое тепло).

Температура, необходимая для работы насоса обычно составляет 5-15 .

Во второй контур, где циркулирует хладагент, встроены теплообменники - испаритель и конденсатор, а также устройства, которые меняют давление хладагента - распыляющий его в жидкой фазе дроссель (узкое калиброванное отверстие) и сжимающий его уже в газообразном состоянии компрессор.

Рабочий цикл. Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды.

Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл повторяется.

Чтобы компрессор работал (поддерживал высокое давление и циркуляцию), его надо подключить к электричеству.

Но на каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5-5 киловатт-часов тепловой энергии.

Теполовой насос для отопления: принцип работы и преимущества использования

Это соотношение называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса.

Значение данной величины зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем она меньше. По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения.

Виды тепловых насосов.

Тепловые насосы бывают двух основных типов – с закрытым и открытым контуром.

Насосы с открытым контуром используют в качестве источника тепла воду поземных источников – она закачивается по пробуренной скважине в тепловой насос, где происходит теплообмен, и охлажденная выводится обратно в подводный горизонт через другую скважину.

Такой тип насосов выгоден тем, что подземная вода сохраняет стабильную и достаточно высокую температуру круглый год.

Насосы с закрытым циклом бывают нескольких типов: вертикальные и горизонтальные (Рис.17).

Насосы с горизонтальным теплообменником имеют замкнутый внешний контур, основная часть которого вкопана горизонтально в землю, или прокладывается по дну близлежащего озера или пруда.

Глубина пролегания труб под землей в таких установках – до метра. Этот способ получения геотермальной энергии самый дешевый, но для его использования необходим ряд технических условий, которые не всегда есть на обустраиваемой территории.

Главное из них – трубы должны пролегать так, чтобы не мешать росту деревьев, земледельческим работам, чтобы была низкая вероятность повреждения подводных труб при сельскохозяйственной или другой деятельности.


Рис. 17. Приповерхностная геотермальная система с теплообменом

Насосы с вертикальным теплообменником включают в себя внешний контур, вкопанный глубоко в землю – на 50-200 м.

Это самый эффективный тип насоса, который производит самое дешевое тепло, но его установка намного дороже предыдущих типов. Выгода в этом случае связана с тем, что на глубине больше 20 метров, температура земли стабильна круглый год и составляет 15-20 градусов, а с увеличением глубины только растет.

Кондиционирование с помощью тепловых насосов. Одним из важных качеств тепловых насосов является возможность переключения из режима отопления зимой в режим кондиционирования летом: только вместо радиаторов используются фанкойлы.

Фанкойл — это внутренний блок, в который подаются тепло- или хладоноситель и прогоняемый с помощью вентилятора воздух, который в зависимости от температуры воды либо нагревается, либо охлаждается.

Включает в себя: теплообменник, вентилятор, фильтр для очистки воздуха и пульт управления.

Так как фанкойлы могут работать и на нагрев и на охлаждение, возможны несколько вариантов обвязки:
— S2 – трубная – когда роль тепло- и хладоносителя выполняет вода и допускается их смешение (и, как вариант, устройство с электронагревателем и теплообменником, работающим только на охлаждение);
— S4 – трубная – когда хладоноситель (например, этиленгликоль) не может смешиваться с теплоносителем (водой).

Мощность фанкойлов по холоду колеблется от 0,5 до 8,5 кВт, а по теплу – от 1,0 до 20,5 кВт.

В них устанавливаются малошумные (от 12 до 45 дБ) вентиляторы, имеющие до 7 скоростей вращения.

Перспективы. Широкому распространению тепловых насосов мешает недостаточная информированность населения. Потенциальных покупателей пугают довольно высокие первоначальные затраты: стоимость насоса и монтажа системы составляет 300-1200$ на 1 кВт необходимой мощности отопления. Но грамотный расчет убедительно доказывает экономическую целесообразность применения этих установок: капиталовложения окупаются, по ориентировочным подсчетам, за 4-9 лет, а служат тепловые насосы по 15-20 лет до капитального ремонта.