Изготовление спирта из опилок. Производство этилового спирта из древесины

Изготовление спирта из опилок. Производство этилового спирта из древесины

На сегодняшний день достаточно много людей занимается изготовлением домашней наливки, однако для некоторых напитков необходимо наличие спиртного элемента. Производство спирта в домашних условиях не является сильно трудоемким. Для этого необходимо знать и учитывать некоторые аспекты и принципы изготовления метилового спирта.

В первую очередь для изготовления метанола требуется наличие зерна. В роли зерновых культур в данном случае могут выступать кукуруза, пшеница. Также можно использовать картофель и крахмал. Но, как известно, во взаимодействии с веществом крахмал не дает никакой реакции. С целью произвести химический элемент используется метод засахарения. А для того, чтобы его засахарить, необходимы определенные ферменты, они присутствуют в солоде. Делая этанол из зерна без химических примесей, наблюдается выход натурального продукта.

Технология производства метанола

Технология по производству спиртового химического вещества в домашних условиях может состоять из нескольких этапов.

Ниже представляются самые основные:

  1. Производство метанола с помощью солода. Зерна культурных растений необходимо проращивать в небольших посудинах, при этом их рассыпают в один слой, примерно до трех сантиметров. Помните, что предварительно пророщенные зерна необходимо обработать раствором марганцовки. После обработки семена помещаются в емкость и смачиваются водой. Следует учитывать, что наличие солнечных лучей, или достаточность света напрямую зависит от скорости прорастания зерна. Поверх емкости следует накрыть полиэтиленовый материал или тонкое стекло, то есть он должен быть достаточно прозрачным. Если наблюдается уменьшение количества воды, ее необходимо добавлять.
  2. Следующий этап: обработка крахмала. Для начала добываем крахмал из продукта, который выбран для изготовления этанола. В данном случае это картофель. Слегка порченый картофель необходимо варить до тех пор, пока из воды начнет образовываться клейстер. Далее ждем, пока продукт остынет, тем временем измельчаем солод. Следом перемешиваем два продукта. Далее происходит процедура расщепления крахмала, ее необходимо производить при температуре не менее 60 ˚ С. Теперь смесь помещается в посуду с горячей водой и оставляется на 1 час. По истечении времени изделие полностью остужают.
  3. Этап брожения. Как известно, брожение характеризуется присутствием в алкоголе содержащих элементов. Однако брагу назвать алкогольным напитком невозможно. После остывания смеси добавляются дрожжи, которые способны вступить в реакцию даже при комнатной температуре. Однако если температура поднимается выше — брожение продукта естественно будет происходить быстрее. При значительной жаре процедура брожения закончится по истечении трех суток. При этом из продукта можно ощущать мягкий запах зерна.
  4. Следующий этап — это перегонка. С помощью чего она производится? Для этого используется специальный аппарат для производства спирта в домашних условиях.
  5. Заключительным этапом считается технология очистки. Можно сказать, что метиловый спирт готов, но замечается, что жидкость не прозрачная. Именно поэтому и делается очистка. Она проводится путем добавления раствора марганцовки. В таком виде оставляем метиловый спирт на одни сутки, затем фильтруем — продукт готов.

Как, видим, технология изготовления домашнего спирта довольно проста и не требует дополнительных усилий.

Производство этанолового вещества из опилок

В последние годы значительно снизилось ископаемое сырье, которое можно использовать для изготовления этилового спирта. Наблюдается нехватка зерна. Однако производство спирта из древесных опилок не самый худший вариант, так как этот сырьевой продукт постоянно обновляется по истечении годов.

Однако изготовление вещества из опилок требует некоторых навыков, и плюс ко всему изготовитель должен иметь специальное оборудование, без которого будет трудоемко изготавливать этанол. Производство спирта из опилок в домашних условиях пользуется высокой популярностью, так не требует высоких затрат.

Как известно, свой изготовленный этанол не сравнивается с заводским вариантом. Продукция, изготовленная в хозяйственных условиях, является более качественной, ведь каждый ингредиент отличается своей уникальностью. Из опилок производить спирт значительно проще!

Как производить спиртной продукт дома?

Производство этилового спирта в домашних условиях ведется при использовании специального аппарата. Данный аппарат способен производить процедуру расщепления определенных элементов, а также проводить химические реакции между ними. Обычное оборудование для изготовления спиртной продукции может выглядеть как мини заводы. Изготавливать в них можно любые виды алкогольных напитков.

Изучить технологию приготовления этилового вещества довольно просто, при этом изделие получается высококачественным. Что из этого можно получить? Во-первых, это продукция алкогольного характера с высоким качеством, а во-вторых полностью происходит окупаемость собственных затрат, для этого требуется специальный аппарат.

Например, если используется сахар в количестве 20 кг, с него выходит до 12 литров алкоголя. При этом процент метанола достигает до 96%. Из этого расчета выходит 25 бутылок водки по пол литра. Кроме того, электричества, которое потребляет аппарат, будет потрачено около 25 квт.

Такое оборудование способно использовать все загруженные продукты по назначению. Выход продукта, непригодного для питья, производимого при первой обработке, можно использовать как очиститель для стеклянных поверхностей и окон. Также такой аппарат можно установить самостоятельно, пользуясь необходимыми схемами и чертежами. Такое оборудование с легкостью справится с производством метилового спирта.

Оборудование по производство спиртных продуктов имеет некоторые принципы своей работы. Аппарат имеет специальную горловину, которая заполняет бак необходимой жидкостью. В виде такой жидкости может выступать брага. При помощи нагревательных горелок продукт нагревается до температуры кипения. После чего аппарат и оборудование необходимо перевести в обычный режим.

Далее происходит охлаждение через холодильное отделение с добавочной очисткой пара от ненужных примесей. Очищенное вещество попадает в бак, а пары в холодильник, в котором охлаждаются до состояния жидкости. Аппарат для производства спирта способен выработать установленный норматив. Результатом проведения данной процедуры выступает алкоголь высококачественного приготовления.

Вы в лесу... Вокруг теснятся толстые и тонкие стволы деревьев. Для химика все они состоят из одного и того же материала - древесины, основной частью которой является органическое вещество - клетчатка (C 6 H 10 O 5) х. Клетчатка образует стенки клеток растений, т. е. их механический скелет; довольно чистую мы её имеем в волокнах хлопчатой бумаги и льна; в деревьях она встречается всегда вместе с другими веществами, чаще всего с лигнином, почти такого же химического состава, но обладающего иными свойствами. Элементарная формула клетчатки C 6 H 10 O 5 совпадает с формулой крахмала, свекловичный сахар имеет формулу C 12 H 2 2O 11 . Отношение числа атомов водорода к числу атомов кислорода в этих формулах такое же, как и в воде: 2:1. Поэтому эти и им подобные вещества в 1844 г. были названы «углеводами», т. е. веществами, как бы (но не на самом деле) состоящими из углерода и воды.

Углевод клетчатка имеет большой молекулярный вес. Молекулы её представляют длинные цепи, составленные из отдельных звеньев. В отличие от белых зёрен крахмала, клетчатка представляет прочные нити и волокна. Это объясняется различным, теперь точно установленным, структурным строением молекул крахмала и клетчатки. Чистая клетчатка в технике зовётся целлюлозой.

В 1811 г. академик Кирхгоф сделал важное открытие. Он взял обыкновенный крахмал, полученный из картофеля, и подействовал на него разбавленной серной кислотой. Под действием H 2 SO 4 произошёл гидролиз крахмала и он превратился в сахар:

Эта реакция имела важное практическое значение. На ней основано крахмало-паточное производство.

Но ведь клетчатка имеет ту же самую эмпирическую формулу, что и крахмал! Значит, из неё тоже можно получить сахар.

Действительно, в 1819 г. было впервые осуществлено и осахаривание клетчатки с помощью разбавленной серной кислоты. Для этих целей можно применять и концентрированную кислоту; русский химик Фогель в 1822 г. получил сахар из обычной бумаги, действуя на неё 87-процентным раствором H 2 SO 4 .

В конце XIX в. получение сахара и спирта из дерева стало интересовать уже и инженеров-практиков. В настоящее время спирт из целлюлозы получают в заводских масштабах. Способ, открытый в пробирке учёного, стад осуществляться в больших стальных аппаратах инженера.

Посетим гидролизный завод... В огромные варочные котлы (перколяторы) загружают опилки, стружки или щепу. Это - отходы лесопильных или деревообрабатывающих предприятий. Раньше эти ценные отходы сжигались или просто выбрасывались на свалку. Через перколяторы непрерывным током проходит слабый (0,2-0,6%) раствор минеральной кислоты (чаще всего серной). Долго держать одну и ту же кислоту в аппарате нельзя: содержащийся в ней сахар, полученный из древесины, легко разрушается. В перколяторах давление 8-10 ат, а температура 170-185°. При этих условиях гидролиз целлюлозы идёт значительно лучше, чем при обычных условиях, когда процесс весьма затруднителен. Из перколяторов получают раствор, содержащий около 4% сахара. Выход сахаристых веществ при гидролизе достигает 85 % от теоретически возможного (по уравнению реакции).

Рис. 8. Наглядная схема получения гидролизного спирта из древесины.

Для Советского Союза, имеющего необозримые лесные массивы и неуклонно развивающего промышленность синтетического каучука, получение спирта из древесины представляет особый интерес. Ещё в 1934 г. XVII съезд ВКП(б) постановил всемерно развивать производство спирта из опилок и отходов бумажной промышленности. Первые советские гидролизно-спиртовые заводы начали регулярно работать с 1938 г. За годы второй и третьей пятилеток у нас были построены и пущены заводы по выработке гидролизного спирта - спирта из древесины. Этот спирт в настоящее время всё в больших количествах перерабатывается в синтетический каучук. Это - спирт из непищевого сырья. Каждый миллион литров гидролизного этилового спирта освобождает для питания около 3 тыс. тонн хлеба или 10 тыс. тонн картофеля и, следовательно, около 600 га посевной площади. Для получения этого количества гидролизного спирта нужно 10 тыс. тонн опилок с 45-процентной влажностью, что может дать за год работы один лесопильный завод средней производительности.

Сибирские ученые работают над технологией производства отечественного биоэтанола

В советское время, кто еще помнит, много шутили на тему спирта, приготовленного из опилок. Ходили слухи, будто после войны дешевую водку делали как раз на основе «опилочного» алкоголя. В народе этот напиток получил название – «сучок».

Вообще, разговоры о производстве спирта из опилок возникли, конечно же, не на пустом месте. Такой продукт действительно производился. Назывался он «гидролизным спиртом». Сырьем для его производства действительно были опилки, точнее – целлюлоза, извлекаемая из отходов лесной промышленности. Выражаясь строго научно – из непищевого растительного сырья. По приблизительным расчетам, из 1 тонны древесины можно было получить около 200 литров этилового спирта. Это будто бы позволяло заменить 1,5 тонны картофеля или 0,7 тонн зерна. Применялся ли такой спирт на советских лекеро-водочных заводах, неизвестно. Производился он, понятное дело, для сугубо технических целей.

Надо сказать, что производство технического этанола из органических отходов уже давно будоражит воображение ученых. Можно найти литературу XIX века, где обсуждаются возможности получения спирта из самого разнообразного сырья, в том числе и непищевого. В XX веке эта тема зазвучала с новой силой. В 1920-го годы ученые в Советской России даже предлагали делать спирт из… фекалий! Было даже шутливое стихотворение Демьяна Бедного:

Ну настали времена,
Что ни день, то чудо:
Водку гонят из говна –
По три литра с пуда!

Русский ум изобретет
В зависть всей Европы -
Скоро водка потечет
В рот из самой жопы…

Впрочем, идея с фекалиями так и осталась на уровне шутки. А вот к целлюлозе отнеслись серьезно. Помните, в «Золотом теленке» Остап Бендер рассказывает иностранцам о рецепте «табуреточного самогона». Дело в том, что с целлюлозой «химичили» уже тогда. Причем, надо заметить, извлекать ее можно не только из отходов лесной промышленности. Отечественное сельское хозяйство ежегодно оставляет огромные горы соломы – это тоже прекрасный источник целлюлозы. Не пропадать же добру. Солома – источник возобновляемый, можно сказать – даровой.

Есть только в этом деле одна загвоздка. Помимо нужной и полезной целлюлозы в одревесневших частях растений (а таковыми, в том числе, является и солома) содержится лигнин, который усложняет весь процесс. Из-за наличия в растворе этого самого лигнина практически невозможно получить нормальную «бражку», поскольку сырье не осахаривается. Лигнин тормозит развитие микроорганизмов. По этой причине требуется «подкормка» - добавление нормального пищевого сырья. Чаще всего в этой роли выступает мука, крахмал или патока.

От лигнина, конечно же, можно избавиться. В целлюлозо-бумажной промышленности это традиционно делается химическим путем, например, с помощью обработки кислотой. Вопрос только в том, куда его потом девать? В принципе, из лигнина можно получить неплохое твердое топливо. Горит он хорошо. Так, в Институте теплофизики СО РАН даже разработали соответствующую технологию сжигания лигнина. Но, к сожалению, тот лигнин, что остается от нашего целлюлозо-бумажного производства, в качестве топлива непригоден из-за содержащейся в нем серы (последствия химической обработки). Если его сжигать – получим кислотные дожди.

Есть и другие способы – обрабатывать сырье перегретым паром (лигнин при высоких температурах плавится), проводить экстракцию органическими растворителями. Кое-где именно так и делают, однако эти способы очень затратные. В условиях плановой экономики, где все затраты брало на себя государство, можно было работать и таким способом. Однако в условиях рыночной экономики получается так, что овчинка, образно говоря, не стоит выделки. И при сопоставлении затрат выходит, что куда дешевле обходится производство технического спирта (по-современному – биоэтанола) из традиционного пищевого сырья. Все зависит от того, в каких количествах вы располагаете таким сырьем. У американцев, например, имеет место перепроизводство кукурузы. Куда проще и выгоднее излишки пустить на производство спирта, чем транспортировать ее на другой континент. В Бразилии, как мы знаем, излишки сахарного тростника также используются в качестве сырья для производства биоэтанола. В принципе, в мире не так уж мало стран, где спирт заливают не только в желудок, но и в бак автомобиля. И все было бы неплохо, если бы некоторые известные мировые деятели (в частности, кубинский лидер Фидель Кастро), не выступили против такого «несправедливого» использования сельхозпродукции в условиях, когда в некоторых странах люди страдают от недоедания, а то и вообще умирают с голоду.

В общем, идя навстречу филантропическим пожеланиям, ученые, работающие в сфере производства биоэтанола, должны искать какие-то более рациональные, более совершенные технологии переработки непищевого сырья. Примерно десять лет назад специалисты Института химии твердого тела и механохимии СО РАН решили пойти другим путем – использовать для этих целей механохимический способ. Вместо известной химической обработки сырья или нагревания они стали применять особую механическую обработку. Для чего были сконструированы специальные мельницы и активаторы. Суть метода такова. Благодаря механической активации целлюлоза переходит из кристаллического состояния в аморфное. Это облегчает работу ферментов. Но главное здесь то, что сырье в процессе механической обработки разделяется на различные частички – с разным (большим или меньшим) содержанием лигнина. Потом уже – благодаря разным аэродинамическим характеристикам этих частичек – их легко отделить друг от друга с помощью специальных установок.

На первый взгляд, все очень просто: размололи – и дело с концом. Но только на первый взгляд. Если бы действительно все было так просто, то уже во всех странах мололи бы солому и прочие растительные отходы. На самом деле здесь необходимо найти правильную интенсивность, чтобы сырье разделилось на отдельные ткани. В противном случае у вас получится однообразная масса. Задача ученых – как раз найти здесь необходимый оптимум. И оптимум этот, как показывает практика, достаточно узкий. Можно и перестараться. В том-то, надо сказать, и заключается работа ученого, чтобы выявить золотую середину. Причем, здесь необходимо учитывать и экономические аспекты – а именно, отработать технологию так, чтобы затраты на механихимическую обработку исходного сырья (каким бы дешевым оно ни было) не сказались на себестоимости производства.

В лабораторных условиях уже получены десятки литров замечательного спирта. Самым впечатляющим выглядит тот момент, что спирт получен из обычной соломы. Причем – без применения кислоты, щелочей и перегретого пара. Главное подспорье тут – «чудо-мельницы», сконструированные спецами Института. В принципе, уже ничто не мешает перейти и к промышленным образцам. Но это уже – другая тема.


Вот он - первый отечественный биоэтанол из соломы! Пока еще в бутылях. Дождемся ли, когда его начнут производить цистернами?

Производство этилового спирта из биомассы опилок реализуется тремя способами:

  • методом гидролиза древесины опилок с последующим сбраживанием гидролизата соответствующими дрожжами в этанол,
  • газификация древесины опилок и др твердых бытовых отходов ТБО медодом пиролиза с образованием синтез-газа (СО + Н2) и последующим сбраживанием синтез-газа соответствующими бактериями в этанол,
  • пиролизным разложением древесины опилок и ТБО с образованием синтез-газа, получением из синтез-газа метилового спирта и последующей каталитической конверсией метанола в этанол (реакция гомологенизации).
  • При гидролизном способе выход спирта составит лишь 200 литров из 1 тонны опилок. А при пиролизном способе переработки выход спирта составит 400 литров из 1 тонны опилок. И себестоимость производства спирта во втором случае - 10 руб / литр и зависит от масштаба производства и стоимости опилок.

    Сравнение разных видов биотоплива

    Биотопливо

    Годовой выход с 1-го гектара земли

    Биотопливо = Эквивалент

    Цена

    Рапсовое масло

    1 480 литров

    1 литр = 0,96 литра Дизеля

    1,18 Евро (май 2008)

    Метиловый эфир рапсового масла (Биодизель)

    1 550 литров

    1 литр = 0,91 литра Дизеля

    1,40 Евро (июнь 2008)

    Биоэтанол

    2 560 литров

    1 литр = 0,65 литра Бензина

    Биомасса в жидкость BtL

    4 030 литров

    1 литр = 0,97 литра Дизеля

    Биометан

    3 540 килограмм

    1 кг = 1,40 литров Бензина

    0,93 Евро (июнь 2008)

    На основании этих данных можно сделать вывод, что экономически более целесообразно микробиологическое получение этанола из продуктов газификации биомассы методом пиролиза.

    Физические свойства, нахождение в природе и строение целлюлозы / клетчатки.

    Целлюлоза древесины, или клетчатка - это полисахарид, представляющий собой основное вещество из которого строятся стенки растительных клеток (целлула - клетка). Клетчатка является основной составной частью древесины (до 70%), содержится в оболочке плодов, семян и т.д. и не встречается в составе животных организмов. Клетчатка представляет собой твёрдое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

    Хлопок представляет собой почти чистую клетчатку; волокна льна и конопли в основном также состоят из клетчатки; в древесине клетчатка составляет около 50%. Бумага, хлопчатобумажные ткани - это изделия из клетчатки. Клетчатку содержат и многие пищевые продукты (мука, крупа, картофель, овощи)

    Обычно клетчатке в древесине сопутствует так называемые - гемицеллюлозы (полуклетчатка) - полисахариды, образованные пентозами (пентозаны) и имеют состав (С5Н8О4)х, а также такими гексозами как манноза (маннаны) или галактоза (галактаны). Кроме того в древесине имеется лигнин - очень сложное вещество, содержащее шестичленные бензольные кольца...

    Таблица. Компонентный состав древесины осины и соломы, % пшеницы

    Сырьё

    Целлюлоза

    Лигнин

    Гемицеллюлоза

    Экстрактивные вещества

    Зола

    Солома пшеницы

    48,7

    21,4

    23,2

    Осина обыкновенная

    46,3

    21,8

    24,0

    Молекулярный вес клетчатки велик и достигает нескольких миллионов. Как и у крахмала, молекулы клетчатки состоят из звеньев С6Н10О5. Таких звеньев в молекулах клетчатки имеется от нескольких сотен до нескольких десятков тысяч. Поэтому состав клетчатки выражают, подобно крахмалу, формулой (С6Н10О5)

    n . По своему строению клетчатка, однако, отличается от крахмала тем, что структура молекул клетчатки имеет не разветвлённую, а нитевидную структуру, вследствие чего клетчатка может образовывать волокна.

    Изучение реакций этерификации клетчатки (см. ниже) приводит к заключению, что в каждом звене С 6 Н 10 О 5 содержится три гидроксильные группы. На этом основании молекулярную формулу клетчатки изображают так:

    Химические свойства и применение клетчатки. На клетчатку при обычной температуре не действуют разбавленные кислоты и щёлочи, но действуют концентрированные кислоты.

    Если в смесь концентрированных кислот - азотной и серной (нужной в качестве водоотнимающего средства) - поместить на 8-10 минут комочек ваты (клетчатки), произойдёт реакция этерификации: получится сложный эфир клетчатки и азотной кислоты - нитроклетчатка. По внешнему виду нитроклетчатка почти не отличается от обычной клетчатки, но при поджигании на воздухе она моментально сгорает (комочек нитрованной ваты при сгорании на ладони не успевает её обжечь), при нагревании в замкнутом пространстве и от детонации она взрывается. В зависимости от количества этерифицирующихся гидроксильных групп образуются зфиры с разным содержанием азота. Полное нитрование клетчатки приводит к образованию тринитроклетчатки:

    При нагревании с разбавленными кислотами клетчатка, как и крахмал, подвергается гидролизу, превращаясь в конечном счёте в глюкозу:

    (С 6 Н 10 О 5) n +

    nH 2 O ==> nC 6 H 12 O 6

    Продукты переработки целлюлозы/клетчатки методом гидролиза находят разнообразное применение (См. рисунок.Структура и переработка целлюлозы (клетчатки) методом гидролиза). В виде древесины она идёт на постройки и многочисленные изделия. Из клетчатки (древесной целлюлозы) делают бумагу. Из волокон конопли, льна, хлопка изготовляют ткани, нити, верёвки. Путём химической переработки клетчатки готовят спирт, искусственный шёлк, взрывчатые вещества и многое другое.

    Производство гидролизного спирта из опилок. Так как клетчатка при гидролизе даёт глюкозу, а глюкозу, как известно, можно превратить в этиловый спирт (этанол) или бутиловый спирт (бутанол), то, следовательно, спирт можно получать путём химической переработки древесины.

    Получение этилового спирта из древесины опилок по одному из способов осуществляется следующим образом. Следует понимать, что производство спирта из древесины путем гидролиза древесины и последующего сбраживания всегда является более металлоемким и затратным, чем например газификация древесины с последующим каталитическим превращением полученного синтез-газа в спирт или бензиновые фракции.

    В гидролизном аппарате нагревают с серной кислотой древесные отходы, например опилки и щепу (см рисунок). Клетчатка при этом гидролизуется до глюкозы (см. выше). Серную кислоту затем нейтрализуют известковым раствором и образующийся осадок СаSО4 отделяют. Полученный раствор глюкозы подвергают брожению в больших чанах в присутствии дрожжей. После брожения раствор отделяют от дрожжей и в ректификационных колоннах отгоняют из него спирт; дрожжи направляют снова в бродильный чан.

    Из 1 тонны сухой древесины таким способом получают до 200 литров этилового спирта (этанола); иными словами, 1 тонна опилок может заменить 1 тонну картофеля или 300 кг зерна в производстве спирта. Если учесть, что в производстве синтетического каучука и других продуктов потребляется большое количество спирта, то станет понятным, какое огромное значение имеет производство этилового спирта из древесины для сбережения пищевого сырья.

    В России получение спирта из древесины опилок осуществляется на ряде гидролизных заводов. Смотри пример получения смесевого бензина Е-85 (85% этанол + 15% бензин) на ООО "Кировский БиоХимЗавод" . Многотоннажным отходом гидролизного производства спирта из опилок является лигнин, разложение которого на свалке воздух явно не ароматизирует. Но, по утверждению американских ученых никелевый катализатор переработает лигнин .

    Следующий, не менее интересный способ переработки древесины опилок - пиролиз, получение синтез-газа (смесь СО и Н2) и последующий синтез спиртов, синтетического бензина, дизельного топлива и прочего.

    Успеха в качественном развитии данного направления удалось добиться ученым Института Нефтехимического Синтеза им. А.В. Топчиева РАН, которые разработали технологию, обеспечивающую получение по максимально простой и экономичной схеме переработки целлюлозы древесины высокооктанового экологически чистого синтетического бензина с хорошим выходом конечного продукта, удовлетворяющего перспективным требованиям стандарта Евро-4.

    Сущность их метода получения синтетического бензина из целлюлозы древесины состоит в следующем.
    Сначала из целлюлозы древесины при повышенном давлении получают синтез-газ, содержащий водород, оксиды углерода, воду, оставшийся после его получения не прореагировавший углеводород, а также содержащий или не содержащий балластный азот. Затем, путем конденсации из синтез-газа выделяют и удаляют воду и потом осуществляют газофазный, одностадийный каталитический синтез диметилового эфира. Полученную таким образом газовую смесь без выделения из нее диметилового эфира под давлением пропускают над катализатором - модифицированным высококремнистым цеолитом - для получения бензина и охлаждают газовый поток для выделения синтетического бензина.

    Получение синтез-газа из целлюлозы древесины осуществляют различными способами, например, в процессе парциального окисления углеводородного сырья под давлением, обеспечивающим возможность его каталитической переработки без дополнительного компримирования (сжатия). Или же получают путем каталитического риформинга углеводородного сырья с водяным паром или путем автотермического риформинга. При этом процесс проводят при подаче воздуха, или воздуха, обогащенного кислородом, или чистого кислорода. Были отлажены и другие варианты. На третьей стадии осуществляется собственно процесс Фишера–Тропша, в котором происходит синтез жидких углеводородов на базе компонентов синтез-газа. Например, при пропускании синтез-газа (смеси окиси углерода СО и водорода Н2) над нагретым до 200°С катализатором, содер­жащим восстановленное железо (чистое железо Fe), образуются смеси преимущественно предельных углеводородов (синтетических бензинов).

    Впервые синтетическое жидкое топливо СЖТ в значительных количествах производили в Германии во время 2-й Мировой войны 1939-45, что было связано с недостатком нефти. Синтез проводили при 170-200 °С, давлении 0,1-1 Мн/м2 (1-10 am) с катализатором на основе Со; в результате получали бензин (когазин 1, или синтин) с октановым числом 40-55, высококачественное дизельное топливо (когазин II) с цетановым числом 80-100 и твёрдый парафин. Добавление 0,8 мл тетраэтилсвинца на 1 литр синтетического бензина повышало его октановое число с 55 до 74. Синтез с использованием катализатора на основе Fe проводился при 220 °С и выше, под давлением 1-3 Мн/м2 (10-30 am). Синтетический бензин, получаемый при этих условиях, содержал 60-70% олефиновых углеводородов нормального и разветвленного строения; его октановое число 75-78. В дальнейшем производство синтетического жидкого топлива СЖТ из CO и Н2 не получило широкого развития ввиду его высокой стоимости и малой эффективности используемых катализаторов. Кроме синтетического бензина и дизельного топлива, синтетическим путём вырабатывают высокооктановые компоненты топлив, добавляемые к ним для повышения антидетонационных свойств. К ним относятся: изооктан, получаемый каталитическим алкилированием изобутана бутиленами; полимербензин - продукт каталитической полимеризации пропан-пропиленовой фракции и др. См Лит.: Рапопорт И. Б., Искусственное жидкое топливо, 2 изд., М., 1955; Петров А. Д., Химия моторных топлив, М., 1953; Лебедев Н. Н., Химия и технология основного органического и нефтехимического синтеза, М., 1971.).

    Пар (при температуре 200°C и более) проходит над железом.

    В зависимости от температуры на стенках реактора образуется: Fe + H2O = FeO + H2 + тепло (ржавчина) или 3Fe + 4H2O = Fe3O4 + 4H2 + тепло (окалина).

    Это стандартные реакции получения водорода в промышленности. Затем отработавшие оксиды железа нужно восстановить обратно до железа.

    Делается это так: FeO + CO = Fe + CO2.

    СО получается, когда на раскаленную железку попадает CH (бензин).

    Синтетический бензин , полученный каталитическим гидрированием окиси углерода, обладает низким октановым числом; чтобы получить высокосортное топливо для двигателей внутреннего сгорания, его следует подвергнуть дополнительной обработке.

    Метиловый спирт (метанол) в промышленности в основном получается из синтез-газа, образующегося в результате конверсии природного газа метана. Реакция проводится при температуре 300-600 °С и давлении 200-250 кгс/см в присутствии окиси цинка и других катализаторов: СО + Н2 -----> CH3OH

    Получение метилового спирта (метанола) из синтез-газа изображено на упрощенной принципиальной схеме

    Гомологизация метанола до этанола. Гомологизацией называется реакция, в результате которой органическое соединение превращается в свой гомолог путем внедрения метиленовой группы СН2. В 1940 году впервые была осуществлена катализируемая оксидом кобальта при давлении 600 атм реакция метанола с синтез-газом с образованием в качестве основного продукта этанола :

    Применение в качестве катализаторов карбонила кобальта Со2(СО)8 позволило понизить давление реакции до 250 атм, при этом степень превращения метанола в этанол составила 70%, а основной продукт - этанол образовывался с селективностью 40%. Побочными продуктами реакции являются ацетальдегид и эфиры уксусной кислоты. В дальнейшем были предложены более селективные катализаторы на основе соединений кобальта и рутения с добавками фосфиновых лигандов и было установлено, что реакцию можно ускорить с помощью введения промоторов - иодид-ионов. В настоящее время удалось достичь селективности по этанолу 90%. Хотя механизм гомологизации до конца не установлен, можно считать, что он близок к механизму карбонилирования метанола.

    Изобутиловый спирт применяется для получения изобутилена, в качестве растворителя, а также в качестве сырья для получения некоторых флотореагентов и ускорителей вулканизации в резиновой промышленности.

    В промышленности изобутиловый спирт получают из окиси углерода СО и водорода Н2 аналогично синтезу метанола. Механизм реакции заключается в протекании следующих превращений:

    Дегидратация изобутилового спирта в изобутилен является каталитической реакцией. Отщепление воды от молекул изобутилового спирта происходит при 370 °С и давлении 3-4 ати. Пары спирта пропускают над катализатором - очищенным глиноземом (активной окисью алюминия)..


    Одна из общих технологических схем производства изобутилена дегидратацией изобутилового спирта представлена ниже.


    Последующей этерификацией изобутилена этиловым спиртом получают кислородосодержащую добавку к бензину - экологически чистый этил-трет-бутиловый эфир (ЭТБЭ), имеющий октановое число 112 пунктов (Исследовательский метод)..

    Этил-трет-бутиловый эфир ЕТВЕ – это продукт синтеза изобутилена с этанолом:

    Технологическая схема очень проста: компоненты сырья, нагретые в теплообменнике, проходят через реактор, где отводится избыточное тепло (реакция очень экзотермическая) и разделяются в двух колоннах.

    В первой ректификационной колонне от реакционной смеси отделяется н-бутан и бутилены, идущие затем на алкилирование (изомеризацию), а во второй – сверху готовый ЭТБЭ, а снизу избыток метанола, который возвращается в сырьевую смесь.

    Катализатором служит ионообменная смола (сульфокатиониты), степень конверсии составляет 94 % (по изобутилену), чистота получаемого ЭТБЭ – 99 %.

    На 1 тонну ЭТБЭ расходуется 360 кг этанола (100% этилового спирта) и 690 кг 100 %-го изобутилена.




    Рис. Схема получения ЭТБЭ:

    1 - реактор; 2, 3 - ректификационные колонны; Потоки: I - изобутилен; II - этанол; III - бутан и бутилены; IV - ЭТБЭ; V - рециркулят этанола.

    Теплота сгорания ЭТБЭ меньше, чем у бензинов, ЭТБЭ используются как высокооктановые добавки к бензинам, повышающие их ДНП и улучшающие распределение октановых чисел по низкокипящим фракциям бензина каталитического риформинга. Оптимальный эффект дает добавка 11 % смеси ЭТБЭ к 89-90 % базового бензина с ОЧ и /ОЧ и = 85/91, после чего получается бензин АИ-93, однако теплота сгорания его снижается с 42,70 МДж/кг (без добавки) до 41,95 МДж/кг.

      Уксусная кислота представляет собой органическое соединение с молекулярной формулой СН3СООН, и является предшественником для изготовления различных других химических веществ, которые служат различные отрасли промышленности конечных пользователей, такие как текстиль, краски, резины, пластмасс и других. Его основные сегменты применения включают изготовление мономера винилацетата (VAM), очищенной терефталевой кислоты (РТА), уксусный ангидрид, и сложноэфирные растворители (этилацетат и бутилацетат).

    Компетенция производителей уксусной кислоты: BP Plc (Великобритания), Celanese Corporation (США), компания Eastman Chemical Company (США), Daicel Corporation (Япония), Цзянсу Софо (Group) Co. Ltd. (Китай), LyondellBasell Industries NV (Нидерланды), Шаньдун Hualu-Hengsheng Chemical Co. Ltd. (Китай), Shanghai Huayi (Group) Company (Китай), Yankuang Cathay Coal Chemicals Co. Ltd. (Китай), и Kingboard Chemical Holdings Ltd. (Гонконг).

     Компания Celanese является одним из крупнейших в мире производителей ацетильных продуктов (промежуточных химических веществ, таких как уксусная кислота, практически для всех основных отраслей промышленности); ацетильные промежуточные продукты составляют около 45% от общего объема продаж. Celanese использует процесс карбонилирования метанола (реакцию метанола и монооксида углерода); использованный в реакции катализатор и полученный продукт (уксусная кислота), очищают с помощью дистилляции.

     В январе 2013 года, Celanese получил патент США (# 7863489) на прямой и селективный способ получения этанола из уксусной кислоты с использованием катализатора на основе платины / олова. Патент охватывает способ селективного получения этанола с помощью парофазной реакции уксусной кислоты в течение гидрирования на каталитической композиции с образованием этанола. В одном из вариантов осуществления настоящего изобретения реакция уксусной кислоты и водорода над катализатором платина / олово, нанесенным на оксид кремния, графит, силикат кальция или алюмосиликат, селективно производит этанол в паровой фазе при температуре около 250 °С.

     Себестоимость производствва этилового спирта через уксуную кислоту и качественные преимущества

     Цена на уксусную кислоту, уксусный ангидрид, мономер винилацетата в США

     Цены на уксусную кислоту, уксусный ангидрид, мономер винилацетата в Европе

     Цены на уксусную кислоту, уксусный ангидрид, мономер винилацетата в Азии

    Производство спирта из картофеля, зерна, мелассы, сахарной свеклы требует расхода больших количеств этих ценных видов сырья. Замена такого сырья более дешевым является одним из источников экономии пищевых продуктов и снижения себестоимости спирта. Поэтому в последнее время значительно увеличилось производство технического этилового спирта из непищевого сырья: древесины, сульфитных щелоков и синтетическим путем из этиленсодержащих газов.

    Производство спирта из древесины

    Гидролизная промышленность выпускает из растительных отходов, содержащих целлюлозу, в частности из древесных отходов, ряд продуктов: этиловый спирт, кормовые дрожжи, глюкозу и др.

    На гидролизных заводах целлюлозу гидролизуют минеральными кислотами до глюкозы, которая используется для сбраживания в спирт, выращивания дрожжей и выпуска в кристаллическом виде. Существуют гидролизные заводы различного профиля: гидролизно-спиртовые, гидролизно-дрожжевые, гидролизно-глюкозные. Гидролизная промышленность имеет большое народнохозяйственное значение; оно обусловлено тем, что из малоценных растительных отходов получают ценные продукты. В частности, из 1 т абсолютно сухой хвойной древесины получают 170-200 л этилового спирта, для выработки которого потребовалось бы 0,7 т зерна или 2 т картофеля.

    Гидролизная промышленность комплексно перерабатывает древесину, в результате чего на гидролизно-спиртовых заводах получают, кроме этилового спирта, и другие ценные продукты: фурфурол, лигнин, жидкую углекислоту, кормовые дрожжи.

    Сырье гидролизного производства

    Сырьем гидролизного производства служит древесина в виде различных отходов лесной и деревообрабатывающей промышленности: опилки, щепа, стружка и др. Влажность древесины колеблется от 40 до 60%. Опилки, перерабатываемые гидролизными заводами, обычно имеют влажность 40- 48%. В состав сухих веществ древесины входят целлюлоза, гемицеллюлозы, лигнин и органические кислоты.

    Гемицеллюлозы древесины состоят из гексозанов: маннана, галактане и пентозанов: ксилана, арабана и их метилированных производных. Лигнин представляет собой сложное вещество ароматического ряда, химический состав и строение его еще не установлены.

    Химический состав абсолютно сухой древесины приведен в таблице 1.

    Таблица 1 — Химический состав абсолютно сухой древесины

    Кроме древесины, в качестве сырья для гидролизной промышленности применяются и растительные отходы сельского хозяйства: подсолнечная лузга, кукурузная кочерыжка, хлопковая шелуха, солома зерновых злаков.

    Химический состав растительных отходов сельского хозяйства представлен в таблице 2.


    Таблица 2 — Химический состав растительных отходов сельского хозяйства

    Технологическая схема комплексной переработки древесины

    Технологическая схема комплексной переработки древесины состоит из следующих стадий: гидролиз древесины, нейтрализация и очистка гидролизата; сбраживание гидролизного сусла, перегонка гидролизной бражки.

    Измельченную древесину подвергают гидролизу разбавленной серной кислотой при нагревании под давлением. При гидролизе гемицеллюлозы и целлюлоза разлагаются. Гемицеллюлозы превращаются в гексозы: глюкозу, галактозу, маннозу и пентозы: ксилозу и арабинозу; целлюлоза — в глюкозу. Лигнин при гидролизе остается в виде нерастворимого остатка.

    Гидролиз древесины осуществляют в гидролизном аппарате — стальном цилиндрическом сосуде. В результате гидролиза получают гидролизат, содержащий около 2-3% сбраживаемых моносахаридов и нерастворимый остаток-лигнин. Последний можно использовать непосредственно в производстве строительных плит, в кирпичном производстве, при помоле цемента, в качестве топлива; после соответствующей обработки лигнин может применяться в производстве пластмасс, резиновой промышленности и др.

    Полученный гидролизат направляют в испаритель, где пар отделяется от жидкости. Выделяющийся пар конденсируют и используют для выделения из него фурфурола, скипидара и метилового спирта. Затем гидролизат охлаждают до 75-80°С, нейтрализуют в нейтрализаторе известковым молоком до pH 4-4,3 и добавляют питательные соли для дрожжей (сернокислый аммоний, суперфосфат). Полученный нейтрализат отстаивают для освобождения от выпавшего осадка сернокислого кальция и других взвешенных частиц. Осевший осадок сернокислого кальция отделяют, сушат, обжигают и получают алебастр, используемый в строительной технике. Нейтрализат охлаждают до 30-32°С и направляют на брожение. Подготовленный таким образом к брожению гидролизат называется суслом. Брожение гидролизного сусла производят непрерывным способом в бродильных чанах. При этом дрожжи непрерывно циркулируют в системе; дрожжи отделяют от бражки на сепараторах. Выделяющийся при брожении углекислый газ используют для выпуска жидкой или твердой углекислоты. Зрелую бражку, содержащую 1,0-1,5% спирта, направляют для перегонки и ректификации на брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Барда, полученная после перегонки, содержит пентозы и ее используют для выращивания кормовых дрожжей.


    Рисунок 1 — Технологическая схема комплексной переработки древесины на гидролизно-спиртовых заводах

    При переработке по указанной схеме из 1 т абсолютно сухой хвойной древесины можно получить следующие количества товарных продуктов:

    • Спирта этилового, л ………………….. 187
    • Жидкой углекислоты, кг …………….. 70
    • или твердой углекислоты, кг ……… 40
    • Дрожжей кормовых, кг…………….. .. 40
    • Фурфурола, кг …………………………….9,4
    • Скипидара, кг ……………………………0,8
    • Термоизоляционных и строительных лигно-плит, м 2 …. 75
    • Алебастра строительного, кг ……..225
    • Сивушного масла, к г ………………..0,3

    Производство спирта из сульфитных щелоков

    При производстве целлюлозы из древесины по сульфитному способу в качестве отхода получают сульфитный щелок — коричневую жидкость с запахом сернистого газа. Химический состав сульфитного щелока (%): вода — 90, сухие вещества — 10, в том числе производные лигнина — лигносульфонаты — 6, гексозы — 2, пентозы -1 , летучие кислоты, фурфурол и другие вещества — около 1. Длительное время сульфитные щелока спускали в реки, они загрязняли воду и уничтожали рыбу в водоемах. В настоящее время у нас имеется ряд заводов по комплексной переработке сульфитного щелока на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты. Производство спирта из сульфитных щелоков состоит из следующих стадий: подготовка сульфитного щелока к брожению, сбраживание сульфитнощелокового сусла, перегонка зрелой сульфитной бражки.

    Подготовку сульфитного щелока к сбраживанию осуществляют по непрерывной схеме. Щелок продувают воздухом для удаления летучих кислот и фурфурола, задерживающих процесс брожения. Продутый щелок нейтрализуют известковым молоком и затем выдерживают для укрупнения выпавших кристаллов сернокислого и сернистокислого кальция; при этом добавляют питательные соли для дрожжей (сернокислый аммоний и суперфосфат). Затем щелок отстаивают. Осевший осадок- шлам — спускают в канализацию, а осветленный щелок охлаждают до 30-32°С. Подготовленный таким образом щелок называется суслом. Сусло направляют в бродильное отделение и сбраживают так же, как гидролизаты древесины, или применяют метод с подвижной насадкой. Подвижной насадкой называются волокна целлюлозы, остающиеся в щелоке. Метод брожения с подвижной насадкой основан на свойстве некоторых рас дрожжей сорбироваться на поверхности целлюлозных волокон и образовывать хлопья волокнисто-дрожжевой массы, которая в зрелой бражке быстро и полно оседает на дно чана. Брожение проводят в бродильной батарее, которая состоит из головного и хвостового чанов. В бродящем сусле волокна целлюлозы с сорбированными дрожжами находятся в непрерывном движении под влиянием выделяющегося углекислого газа. Отбродившая бражка поступает из головного чана в хвостовой, где заканчивается процесс брожения, и волокна с дрожжами оседают на дно. Осевшую дрожжеволокнистую массу насосом возвращают в головной чан, куда одновременно подают сусло, а зрелую бражку, содержащую 0,5-1% спирта, направляют в брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Полученная после перегонки барда содержит пентозы и служит питательной средой для выращивания кормовых дрожжей, которые затем отделяют, высушивают и выпускают в виде сухих дрожжей. Барду после отделения дрожжей, содержащую лигносульфонаты, упаривают до содержания сухих веществ 50-80%. Полученный продукт называется сульфитно-бардяным концентратом и применяется в производстве пластических масс, строительных материалов, синтетических дубителей для получения кожи, в литейном производстве и дорожном строительстве.

    Из сульфитно-бардяных концентратов можно получить ценное ароматическое вещество — ванилин.

    Технологическая схема комплексной переработки сульфитных щелоков на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты показана на рисунке 2.

    Рисунок 2 — Технологическая схема переработки сульфитных щелоков на спирт

    При переработке сульфитных щелоков получают в пересчете на 1т еловой древесины:

    • Спирта этилового, л ……………….. 30-50
    • Спирта метилового, л …………………… 1
    • Жидкой углекислоты, л ………….. 19-25
    • Сухих кормовых дрожжей, кг …. 15
    • Сульфитно-бардяных концентратов влажностью 20%, кг …. 475

    Производство спирта синтетическим методом

    Сырьем для производства синтетического этилового спирта служат газы нефтеперерабатывающих заводов, которые содержат этилен. Кроме того, можно использовать и другие этиленсодержащие газы: коксовый газ, получаемый при коксовании угля, и попутные нефтяные газы.

    В настоящее время синтетический этиловый спирт получают двумя способами: сернокислотной гидратацией и прямой гидратацией этилена.

    Сернокислая гидратация этилена

    Производство этилового спирта этим способом состоит из следующих процессов: взаимодействия этилена с серной кислотой, при котором образуются этилсерная кислота и диэтилсульфат; гидролиз полученных продуктов с образованием спирта; отделение спирта от серной кислоты и очистка его.

    Сырьем для сернокислой гидратации служат газы, содержащие 47-50% вес. этилена, а также газы с меньшим содержанием этилена. Процесс осуществляется по схеме, приведенной ниже.


    Рисунок 3 — Технологическая схем а получения синтетического спирта способом сернокислотной гидратации

    Этилен взаимодействует с серной кислотой в реакционной колонне, представляющей собой вертикальный цилиндр. Внутри колонны находятся колпачковые тарелки с переливными стаканами. В нижнюю часть колонны компрессором подают этиленосодержащий газ, сверху в колонну подводят для орошения 97-98%-ная серная кислота. Газ, поднимаясь вверх, на каждой тарелке барботирует через слой жидкости. Этилен с серной кислотой взаимодействует по реакциям:

    Из реакционной колонны непрерывно вытекает смесь этилсерной кислоты, диэтилсульфата и непрореагировавшей серной кислоты. Эту смесь охлаждают в холодильнике до 50°С и направляют на гидролиз, при котором протекают такие реакции:

    Моноэтилсульфат, полученный в результате второй реакции, подвергают дальнейшему разложению с образованием еще одной молекулы спирта.

    Прямая гидратация этилена

    Технологическая схема производства этилового спирта способом прямой гидратации этилена представлена ниже.


    Рисунок 4 — Технологическая схема прямой гидратации этилена при производстве этилового спирта

    Сырьем для способа прямой гидратации служит газ с высоким содержанием этилена (94-96%). Этилен сжимают компрессором до 8-9 КПа. Сжатый этилен смешивают с водяным паром в определённых соотношениях. Взаимодействие этилена с водяным паром производят в контактном аппарате — гидрататоре, представляющим собой вертикальную стальную полую цилиндрическую колонну, в которой находится катализатор (фосфорная кислота, нанесенная на алюмосиликат).

    Смесь этилена и водяного пара при 280-300°С под давлением около 8,0 КПа подают в гидрататор, в котором поддерживают такие же параметры. При взаимодействии этилена с водяным паром, кроме основной реакции образования этилового спирта, протекают побочные реакции, в результате которых получаются диэтиловый эфир, уксусный альдегид и продукты полимеризации этилена. Продукты синтеза уносят из гидрататора небольшое количество фосфорной кислоты, которая может в дальнейшем оказывать коррозийное действие на аппаратуру и трубопроводы. Чтобы избежать этого, кислоту, содержащуюся в продуктах синтеза, нейтрализуют щелочью. Продукты синтеза после нейтрализации пропускают через солеотделитель, а затем охлаждают в теплообменнике и производят конденсацию водно-спиртовых паров. Получают смесь водно-спиртовой жидкости и непрореагировавшего этилена. Непрореагировавший этилен отделяют от жидкости в сепараторе. Он представляет собой вертикальный цилиндр, в котором установлены перегородки, резко изменяющие скорость и направление газового потока. Этилен из сепаратора отводят во всасывающую линию циркуляционного компрессора и направляют на смешение со свежим этиленом. Водно-спиртовой раствор, вытекающий из сепаратора, содержит 18,5-19% об. спирта. Его концентрируют в отпарной колонне и в виде паров направляют для очистки в ректификационную колонну. Спирт получают крепостью 90,5% об. На заводах синтетического спирта применяется способ прямой гидратации этилена.

    Производство синтетического спирта, независимо от способа его получения, значительно более эффективно, чем производство спирта из пищевого сырья. Для получения 1 т этилового спирта из картофеля или зерна необходимо затратить 160-200 чел -дней, из газов нефтепереработки только 10 чел -дней. Себестоимость синтетического спирта примерно в четыре раза меньше себестоимости спирта из пищевого сырья.